Skip to main content

Improving of Non-Interactive Zero-Knowledge Arguments Using Oblivious Transfer

  • Conference paper
New Results in Dependability and Computer Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 224))

Abstract

We study non-interactive zero-knowledge (NIZK) arguments using oblivious transfer (OT) that correspond to interactive proof protocols but assuming that the prover is computationally bounded. As opposed to the single theorem NIZK proof protocols using common random string, NIZK argument protocols using OT are «multilingual» that is language L or the one-way function can be chosen and declared by prover in non-interactive mode. These protocols use m-out-of-n OT with public keys given by verifier to prover in the initialization phase and common element with unknown to prover and verifier pre-image. It is shown that due to usage of different verifier’s secret encryption keys the implementation of NIZK argument protocols can be simplified using a single randomizer for p successive elementary transactions. For systems using 1-out-of-2 OT, proposal allows increase the information rate approximately to 5p/(3p+1) times or reduce the soundness probability of NIZK arguments to the same degree. The above factor for single use NIZK is about two that corresponds to almost quadratic decreasing of soundness probability. For NIZK argument using t+1-out-of-2t OT (t>1), it is shown that its soundness probability for small t is essentially lower in comparison with soundness probability of NIZK arguments using 1-out-of-2 OT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldwasser, S., Micali, S., Rakoff, C.: Knowledge Complexity of Interactive Proof Systems. In: Micali, S. (ed.) Advances in Computing Research: A Research Annual. Randomness and computation, vol. 5, pp. 73–90 (1986); Extended abstract in 18th STOC, pp. 59–68

    Google Scholar 

  2. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: 20th Annual ACM STOC, pp. 103–112 (1988)

    Google Scholar 

  3. De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge proof systems. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 52–72. Springer, Heidelberg (1988)

    Google Scholar 

  4. Blum, M., De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge. SIAM Journal of Computing 20(6), 1084–1118 (1991)

    Article  MATH  Google Scholar 

  5. De Santis, A., Di Crescenzo, G., Persiano, G.: Randomness efficient non-interactive zero-knowledge (extended abstract). In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, Springer, Heidelberg (1997)

    Google Scholar 

  6. Chase, M., Lysyanskaya, A.: Simulatable VRFs with Application to Multi-Theorem NIZK. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 303–322. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero-knowledge proofs under general assumptions. SIAM Journal on Computing 29(1), 1–28 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero-knowledge proofs are equivalent. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Fiat, A., Shamir, A.: How to prove yourself: practical solutions of identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  10. Goldwasser, S., Tauman Kalai, Y.: On the (in)security of the Fiat-Shamir paradigm. In: 44th FOCS, pp. 102–115. IEEE Computer Society Press (2003)

    Google Scholar 

  11. Koblitz, N.: A Course in number theory and cryptography. Springer, New York (1994)

    Book  MATH  Google Scholar 

  12. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report TR-81. Aiken Computation Laboratory, Harvard University (1981)

    Google Scholar 

  13. Blum, M.: How to exchange (secret) keys. Trans. Computer Systems 1, 175–193 (1983)

    Article  Google Scholar 

  14. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Communications of the ACM 28, 637–647 (1985)

    Article  MathSciNet  Google Scholar 

  15. ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inform. Theory IT-31(4):31(4), 469–472 (1985)

    Google Scholar 

  16. Bellare, M., Rivest, R.L.: Translucent cryptography – an alternative to key escrow, and its implementation via fractional oblivious transfer. MIT/LCS Technical Report 683 (1990)

    Google Scholar 

  17. Brasard, G., Crépeau, C., Robert, J.M.: Oblivious transfer and intersecting codes. IEEE Transaction of Information Theory, Special Issue on Coding and Complexity 42, 1769–1780 (1996)

    Article  Google Scholar 

  18. Mamontov, A.I., Frolov, A.B.: On one scheme for oblivious transfer of combinations of messages. PEI Bulletin 3, 113–119 (2005) (in Russian)

    Google Scholar 

  19. Mu, Y., Zhang, J., Varadharajan, V.: m out of n oblivious transfer. In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 395–405. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Nyberg, K., Rueppel, R.A.: A new signature scheme based on the DSA giving message recovery. In: 1st ACM Conf. on Computer and Communications Security, Fairfax, Virginia, pp. 58–61 (1993)

    Google Scholar 

  21. Frolov, A.: Effective Oblivious Transfer Using Probabilistic Encryption. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) Complex Systems and Dependability. AISC, vol. 170, pp. 131–147. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Schnorr, C.-P.: Efficient identification and signature for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

    Google Scholar 

  23. Mao, W.: Modern Cryptography. Theory and practice. Hewlett Packard Books: Walter Bruce. Hewlett Packard Company (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Frolov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Frolov, A. (2013). Improving of Non-Interactive Zero-Knowledge Arguments Using Oblivious Transfer. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds) New Results in Dependability and Computer Systems. Advances in Intelligent Systems and Computing, vol 224. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00945-2_14

Download citation

Publish with us

Policies and ethics