Improving of Non-Interactive Zero-Knowledge Arguments Using Oblivious Transfer

  • Alexander Frolov
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 224)


We study non-interactive zero-knowledge (NIZK) arguments using oblivious transfer (OT) that correspond to interactive proof protocols but assuming that the prover is computationally bounded. As opposed to the single theorem NIZK proof protocols using common random string, NIZK argument protocols using OT are «multilingual» that is language L or the one-way function can be chosen and declared by prover in non-interactive mode. These protocols use m-out-of-n OT with public keys given by verifier to prover in the initialization phase and common element with unknown to prover and verifier pre-image. It is shown that due to usage of different verifier’s secret encryption keys the implementation of NIZK argument protocols can be simplified using a single randomizer for p successive elementary transactions. For systems using 1-out-of-2 OT, proposal allows increase the information rate approximately to 5p/(3p+1) times or reduce the soundness probability of NIZK arguments to the same degree. The above factor for single use NIZK is about two that corresponds to almost quadratic decreasing of soundness probability. For NIZK argument using t+1-out-of-2 t OT (t>1), it is shown that its soundness probability for small t is essentially lower in comparison with soundness probability of NIZK arguments using 1-out-of-2 OT.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goldwasser, S., Micali, S., Rakoff, C.: Knowledge Complexity of Interactive Proof Systems. In: Micali, S. (ed.) Advances in Computing Research: A Research Annual. Randomness and computation, vol. 5, pp. 73–90 (1986); Extended abstract in 18th STOC, pp. 59–68Google Scholar
  2. 2.
    Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: 20th Annual ACM STOC, pp. 103–112 (1988)Google Scholar
  3. 3.
    De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge proof systems. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 52–72. Springer, Heidelberg (1988)Google Scholar
  4. 4.
    Blum, M., De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge. SIAM Journal of Computing 20(6), 1084–1118 (1991)MATHCrossRefGoogle Scholar
  5. 5.
    De Santis, A., Di Crescenzo, G., Persiano, G.: Randomness efficient non-interactive zero-knowledge (extended abstract). In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Chase, M., Lysyanskaya, A.: Simulatable VRFs with Application to Multi-Theorem NIZK. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 303–322. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero-knowledge proofs under general assumptions. SIAM Journal on Computing 29(1), 1–28 (1999)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero-knowledge proofs are equivalent. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions of identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  10. 10.
    Goldwasser, S., Tauman Kalai, Y.: On the (in)security of the Fiat-Shamir paradigm. In: 44th FOCS, pp. 102–115. IEEE Computer Society Press (2003)Google Scholar
  11. 11.
    Koblitz, N.: A Course in number theory and cryptography. Springer, New York (1994)MATHCrossRefGoogle Scholar
  12. 12.
    Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report TR-81. Aiken Computation Laboratory, Harvard University (1981)Google Scholar
  13. 13.
    Blum, M.: How to exchange (secret) keys. Trans. Computer Systems 1, 175–193 (1983)CrossRefGoogle Scholar
  14. 14.
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Communications of the ACM 28, 637–647 (1985)MathSciNetCrossRefGoogle Scholar
  15. 15.
    ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inform. Theory IT-31(4):31(4), 469–472 (1985)Google Scholar
  16. 16.
    Bellare, M., Rivest, R.L.: Translucent cryptography – an alternative to key escrow, and its implementation via fractional oblivious transfer. MIT/LCS Technical Report 683 (1990)Google Scholar
  17. 17.
    Brasard, G., Crépeau, C., Robert, J.M.: Oblivious transfer and intersecting codes. IEEE Transaction of Information Theory, Special Issue on Coding and Complexity 42, 1769–1780 (1996)CrossRefGoogle Scholar
  18. 18.
    Mamontov, A.I., Frolov, A.B.: On one scheme for oblivious transfer of combinations of messages. PEI Bulletin 3, 113–119 (2005) (in Russian)Google Scholar
  19. 19.
    Mu, Y., Zhang, J., Varadharajan, V.: m out of n oblivious transfer. In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 395–405. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Nyberg, K., Rueppel, R.A.: A new signature scheme based on the DSA giving message recovery. In: 1st ACM Conf. on Computer and Communications Security, Fairfax, Virginia, pp. 58–61 (1993)Google Scholar
  21. 21.
    Frolov, A.: Effective Oblivious Transfer Using Probabilistic Encryption. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) Complex Systems and Dependability. AISC, vol. 170, pp. 131–147. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Schnorr, C.-P.: Efficient identification and signature for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)Google Scholar
  23. 23.
    Mao, W.: Modern Cryptography. Theory and practice. Hewlett Packard Books: Walter Bruce. Hewlett Packard Company (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.National Research University Moscow Power Engineering InstituteMoscowRussian Federation

Personalised recommendations