Application of Data Fusion for Route Choice Modelling by Route Choice Driving Simulator

  • Mauro Dell’Orco
  • Roberta Di Pace
  • Mario Marinelli
  • Francesco Galante
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 223)


Modelling route choices is one of the most significant tasks in transportation models. Route choice models under Advanced Traveller Information Systems (ATIS) are often developed and calibrated by using, among other, Stated Preferences (SP) surveys. Different types of SP approaches can be adopted, alternatively based on Travel Simulators (TSs) or Driving Simulators (DSs). Here a pilot study is presented, aimed at setting up an SP-tool based on driving simulator developed at the Technical University of Bari. The obtained results are analysed in order to check the accordance with expectations in particular the results of application of data fusion technique are shown in order to explain how data collected by DSs, can be used to reduce the effect of choice of behaviour in unrealistic scenarios in TSs.


Stated Preference Route choice modeling Driving simulator ATIS Data fusion 


  1. 1.
    Avineri, E., Prashker, J.: The impact of travel time information on travellers’ learning under uncertainty. Transportation 33(4), 393–408 (2006)CrossRefGoogle Scholar
  2. 2.
    Ben-Akiva, M.E., Morikawa, T., Shiroshi, F.: Analysis of the reliability of preference ranking data. J. Bus. Res. 23, 253–268 (1991)CrossRefGoogle Scholar
  3. 3.
    Ben-Elia, E., Di Pace, R., Bifulco, G.N., Shiftan, Y.: The impact of travel information’s accuracy on route-choice. Transp. Res. Part C 26, 146–159 (2013)CrossRefGoogle Scholar
  4. 4.
    Bifulco, G.N., Cantarella, G.E., de Luca, S., Di Pace, R.: Analysis and modelling the effects of information accuracy on travellers’ behavior, Intelligent Transportation Systems (ITSC), 2011 14th International IEEE Conference on 5–7 Oct. 2011, pp. 2098–2105, Washington, DC (2011)Google Scholar
  5. 5.
    Bifulco, G.N., Di Pace, R., Simonelli, F.: A simulation platform for the analysis of travel choices in ATIS context through Stated Preferences experiments EWGT Conference-Padua, Italy (2009)Google Scholar
  6. 6.
    Bifulco, G.N., Simonelli, F, Di Pace, R.: The role of the uncertainty in ATIS applications. In: 12th On-line Conference on Soft Computing in Industrial Applications—Sp. Sess. Traffic Systems, 16/10/2007 (2007)Google Scholar
  7. 7.
    Bonsall, P., Firmin, P., Anderson, M., Palmer, I., Balmforth, P.: Validating the results of route choice simulator. Transp. Res. Part C 5(6), 371–387 (1997)Google Scholar
  8. 8.
    Bonsall, P., Parry, T.: Using an interactive route choice simulator to investigate drivers’ compliance with route guidance advice. Transp. Res. Rec. 1306, 59–68 (1991)Google Scholar
  9. 9.
    Cantarella, G.E., de Luca, S.: Multilayer feedforward networks for transportation mode choice analysis: an analysis and a comparison with random utility models. Transp. Res. Part C 13(2), 121–155 (2005)CrossRefGoogle Scholar
  10. 10.
    Cascetta, E.: Transportation Systems Engineering: Theory and Methods, Kluwer Academic publishers (2011)Google Scholar
  11. 11.
    Chang, H.L., Chen, P.C.: Impact of uncertain travel information on drivers’ route choice behaviour in TRB 88th annual meeting compendium of Papers DVD, report n. 09 (2009)Google Scholar
  12. 12.
    Chorus, C.G., Arentze, T.A., Timmermans, H.J.P.: Traveler compliance with advice: a Bayesian utilitarian perspective. Transp. Res. Part E 45(3), 486–500 (2009)Google Scholar
  13. 13.
    Chorus, C.G., Molin, E.J.E., Arentze, T.A., Hoogendoorn, S.P., Timmermans, H.J.P., Van Wee, G.P.: Validation of a multimodal travel simulator with travel information provision. Transp. Res. Part C: Emerg. Technol. 15(3), 191–207 (2007)Google Scholar
  14. 14.
    Dell’Orco, M., Marinelli, M.: Fuzzy data fusion for updating information in modelling drivers’ choice behavior. ICIC 2009, LNAI 5755: 1075–1084 (2009)Google Scholar
  15. 15.
    Di Pace R., Marinelli M., Bifulco G.N., Dell’Orco M.: Modeling risk perception in ATIS context through Fuzzy Logic. Procedia: Social & Behavioral Sciences, vol. 20, pp. 916–926. (2011) ISSN: 1877–0428. doi: 10.1016/j.sbspro.2011.08.100
  16. 16.
    Di Pace R., Marinelli M., Bifulco G.N.: Dell’Orco M.: Modelling risk perception in ATIS context: a comparison of different Fuzzy Logic-based approaches In: Procedia: Social & Behavioral Sciences (2012)Google Scholar
  17. 17.
    Di Pace, R., Galante, F., Bifulco, G.N., Pernetti, M.: Collecting data in advanced traveller information system context: travel simulator platform versus choice driving simulator, Compendium of presented papers, 90th TRB Annual Meeting (2011)Google Scholar
  18. 18.
    Di Pace, R.: Analytical Tools for ATIS (Strumenti Analitici per Applicazioni ATIS). Ph.D. thesis, Università degli Studi di Napoli "Federico II"- Facoltà di Ingegneria (2008),_Roberta.html
  19. 19.
    de Luca, S., Cantarella, G.E.: Validation and comparison of choice models. In: Saleh, W., Sammer, G. (eds.) Success and Failure of Travel Demand Management Measures, pp. 37–58. Ashgate publications, UK (2009)Google Scholar
  20. 20.
    Geer, J.F., Klir, G.J.: A mathematical analysis of information-preserving transformations between probabilistic and possibilistic formulations of Uncertainty. Int. J. Gen. Syst. 20, 143–176 (1992)CrossRefzbMATHGoogle Scholar
  21. 21.
    Katsikopoulos, K.V., Duse-Anthony, Y., Fisher, D.L., Duffy, S.A.: Risk attitude reversals in drivers’ route choice when range of travel time information is provided. Hum. Factors Ergon. Soc. 43(3), 466–473 (2002)CrossRefGoogle Scholar
  22. 22.
    Klir, G.J., Wang, Z.: Fuzzy Measure Theory. Plenum Press, New York (1992)zbMATHGoogle Scholar
  23. 23.
    Koutsopoulos, H.N., Lotan, T., Yang, Q.: A driving simulator and its application for modelling route choice in the presence of information. Transp. Res. Part C: Emerg. Technol. 2(2), 91–107 (1994)CrossRefGoogle Scholar
  24. 24.
    Mahmassani, H.S., Jou, R.C.: Transferring insights into commuter behaviour dynamics from laboratory experiments to field surveys. Transp. Res. Part A: Policy Pract. 34(4), 243–260 (1998)CrossRefGoogle Scholar
  25. 25.
    Srinivasan, K.K., Mahmassani, H.S.: Dynamic decision and adjustment processes in commuter behavior under real-time information Technical Research Report SWUTC/02/167204-1, Center for Transportation Research, University of Texas at Austin, February 2002Google Scholar
  26. 26.
    Srinivasan, K.K., Mahmassani, H.S.: Role of congestion and information in tripmakers’ dynamic decision processes: an experimental investigation. Transp. Res. Rec. 1676, 43–52 (1999)Google Scholar
  27. 27.
    Tian, H., Fisher, D.L., Post, B.: Route choice behavior in a driving simulator with real-time information, 90th TRB annual meeting (2010)Google Scholar
  28. 28.
    Tian, H., Gao, S., Fisher, D.L., Post, B.: A mixed-logit latent-class model of strategic route choice behavior with real-time information transportation research board 91st annual meeting (2012)Google Scholar
  29. 29.
    Yager, R.R., Kelman, A.: Fusion of fuzzy information With consideration for compatibility, partial aggregation, and reinforcement. Int. J. Intell. Syst. 15, 93–122 (1996)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mauro Dell’Orco
    • 1
  • Roberta Di Pace
    • 2
  • Mario Marinelli
    • 1
  • Francesco Galante
    • 3
  1. 1.D. I. C. A. T. E. ChTechnical University of BariBariItaly
  2. 2.Department of Civil EngineeringUniversity of SalernoSalernoItaly
  3. 3.Department of Transportation EngineeringUniversity of Naples “Federico II”NaplesItaly

Personalised recommendations