Advertisement

Multi-objective Algorithms for the Single Machine Scheduling Problem with Sequence-dependent Family Setups

  • Marcelo Ferreira Rego
  • Marcone Jamilson Freitas Souza
  • Igor Machado Coelho
  • José Elias Claudio Arroyo
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 223)

Abstract

This work treats the single machine scheduling problem in which the setup time depends on the sequence and the job family. The objective is to minimize the makespan and the total weighted tardiness. In order to solve the problem two multi-objective algorithms are analyzed: one based on Multi-objective Variable Neighborhood Search (MOVNS) and another on Pareto Iterated Local Search (PILS). Two literature algorithms based on MOVNS are adapted to solve the problem, resulting in the MOVNS_Ottoni and MOVNS_Arroyo variants. Also, a new perturbation procedure for the PILS is proposed, yielding the PILS1 variant. Computational experiments done over randomly generated instances show that PILS1 is statistically better than all other algorithms in relation to the cardinality, average distance, maximum distance, difference of hypervolume and epsilon metrics.

Keywords

Single machine scheduling Multi-objective optimization  Pareto iterated local search Multi-objective variable neighborhood search 

Notes

Acknowledgments

The authors would like to thank CNPq and FAPEMIG for the financial support on the development of this work.

References

  1. 1.
    Arroyo, J.E.C., Ottoni, R.S., Oliveira, A.P.: Multi-objective variable neighborhood search algorithms for a single machine scheduling problem with distinct due windows. Electron. Notes Theor. Comput. Sci. 281, 5–19 (2011)CrossRefGoogle Scholar
  2. 2.
    Baker, K.R., Magazine, M.J.: Minimizing maximum lateness with job families. Eur. J. Oper. Res. 127(1), 126–139 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brucker, P.: Scheduling Algorithms. Springer, Berlin (2007)Google Scholar
  4. 4.
    Bustamante, L.M.: Minimização do custo de antecipação e atraso para o problema de sequenciamento de uma máquina com tempo de preparação dependente da sequência: aplicação em uma usina siderúrgica. Dissertação de mestrado, Programa de Pós-Graduação em Engenharia de Produção, Universidade Federal de Minas Gerais, Belo Horizonte (2007)Google Scholar
  5. 5.
    Czyzżak, P., Jaszkiewicz, A.: Pareto simulated annealing—a metaheuristic technique for multiple-objective combinatorial optimization. J. Multi-Criteria Decis. Anal. 7(1), 34–47 (1998)CrossRefGoogle Scholar
  6. 6.
    Deb, K., Jain, S.: Running performance metrics for evolutionary multi-objective optimization. Technical report (2002). doi: 10.1.1.9.159 Google Scholar
  7. 7.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  8. 8.
    Fonseca, C.M., Knowles, J.D., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. In: 3rd International Conference on Evolutionary Multi-Criterion Optimization (EMO), vol. 216 (2005)Google Scholar
  9. 9.
    Geiger, M.J.: Randomised variable neighbourhood search for multi objective optimisation. In: 4th EU/ME: Design and Evaluation of Advanced Hybrid Meta-Heuristics, pp. 34–42 (2004)Google Scholar
  10. 10.
    Geiger, M.J.: Improvements for multi-objective flow shop scheduling by pareto iterated local search. In: 8th Metaheuristics International Conference (MIC), pp. 195.1–195.10 (2009)Google Scholar
  11. 11.
    Gendreau, M., Laporte, G., Guimaraes, E.M.: A divide and merge heuristic for the multiprocessor scheduling problem with sequence dependent setup times. Eur. J. Oper. Res. 133(1), 183–189 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations to the non-dominated set. IMM, Department of Mathematical Modelling, Technical Universityof Denmark (1998)Google Scholar
  13. 13.
    Hariri, A.M.A., Potts, C.N.: Single machine scheduling with batch set-up times to minimize maximum lateness. Ann. Oper. Res. 70, 75–92 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jin, F., Gupta, J.N.D., Song, S., Wu, C.: Single machine scheduling with sequence-dependent family setups to minimize maximum lateness. J. Oper. Res. Soc. 61(7), 1181–1189 (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kim, D.W., Kim, K.H., Jang, W., Chen, F.F.: Unrelated parallel machine scheduling with setup times using simulated annealing. Robot Comput. Integr. Manuf. 18(3–4), 223–231 (2002)CrossRefGoogle Scholar
  16. 16.
    Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Proceedings of the Congress on Evolutionary Computation (CEC), vol. 1, pp. 711–716. IEEE (2002)Google Scholar
  17. 17.
    Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. Handbook of Metaheuristics, pp. 320–353, Springer, New York (2003)Google Scholar
  18. 18.
    Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective algorithms for the flowshop scheduling problem. INFORMS J. Comput. 20(3), 451 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mladenovic, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ottoni, R.S., Arroyo, J.E.C., Santos, A.G.: Algoritmo vns multi-objetivo para um problema de programação de tarefas em uma máquina com janelas de entrega. In: Simpósio Brasileiro de Pesquisa Operacional (SBPO), pp. 1801–1812 (2011)Google Scholar
  21. 21.
    Tang, L., Wang, X.: Simultaneously scheduling multiple turns for steel color-coating production. Eur. J. Oper. Res. 198(3), 715–725 (2009)CrossRefzbMATHGoogle Scholar
  22. 22.
    Valente, J.: An analysis of the importance of appropriate tie breaking rules in dispatch heuristics. Pesquisa Operacional 26(1), 169–180 (2006)CrossRefGoogle Scholar
  23. 23.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)CrossRefGoogle Scholar
  24. 24.
    Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Parallel Problem Solving from Nature-PPSN V, pp. 292–301. Springer, Berlin (1998)Google Scholar
  25. 25.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marcelo Ferreira Rego
    • 1
  • Marcone Jamilson Freitas Souza
    • 1
  • Igor Machado Coelho
    • 2
  • José Elias Claudio Arroyo
    • 3
  1. 1.Departament of ComputingFederal University of Ouro PretoOuro PretoBrazil
  2. 2.Institute of ComputingFluminense Federal UniversityNiteróiBrazil
  3. 3.Departament of ComputingFederal University of ViçosaViçosaBrazil

Personalised recommendations