Skip to main content

Allelopathy for Pest Control

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 13))

Abstract

Plants are attacked by a plethora of pathogens or pests. Pest attack in turn induces or enhances the synthesis of a many chemical ‘weapons’ produced by plant defenses. These chemicals are classified broadly into nitrogen compounds, terpenoids and phenolics. They have a broad range of antifungal, antimicrobial and pesticidal activities. Thus, these plant chemicals can be extracted and further used as efficient biopesticides or microbicides. They are eco-friendly due to their ephemeral nature. Unlike many synthetic pesticides that often have harmful side effects and long residual time, allelochemicals are biodegradable fast.

Plants produce many types of secondary metabolites – listed in Table 1 – including resins, phenolic acids, amino acids and essential oils, which can be used to manage pests. We review crop allelopathic activity to suppress weeds, microbes and insects. We present benefits of biotechnological methods of extraction and use of allelochemicals. The essential oils of medicinal plants such as thyme, oregano, rosemary, lavender, fennel and laurel have fungitoxic effects against foliar and soil-borne plant pathogenic fungi. Natural miticides are an alternative to synthetic miticides because they have low toxicity in mammals, little environmental effect and wide public acceptance. Therefore essential oils have the potential for use in the control of many pests such as a mite Tetranychus cinnabarinus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Avr:

avirulence genes

HCN:

cyanohydric acid

PCD:

programmed cell death

PPO:

polyphenol oxidase

PR:

pathogenesis-related genes

QTL:

quantitative trait loci

R:

resistance

References

  • Abbasi PA, Riga E, Conn KL, Lazarovits G (2005) Effect of neem cake soil amendment on reduction of damping-off severity and population densities of plant-parasitic nematodes and soilborne plant pathogens. Can J Plant Pathol 27:38–45

    Article  Google Scholar 

  • Agrawal AA (2007) Macroevolution of plant defense strategies. Trends Ecol Evol 22:103–109

    Article  PubMed  Google Scholar 

  • Agrawal AA, Fishbein M (2008) Phylogenetic escalation and decline of plant defense strategies. Proc Natl Acad Sci USA 105:10057–10060

    Article  PubMed  CAS  Google Scholar 

  • Agrawal AA, Konno K (2009) Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol Syst 40:311–331

    Article  Google Scholar 

  • Asano N, Nash RJ, Molyneux RJ, Fleet GWJ (2000) Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron Asymmetry 11:1645–1680

    Article  CAS  Google Scholar 

  • Azarkan M, Wintjens R, Looze Y, Baeyens-Volant D (2004) Detection of three wound-induced proteins in papaya latex. Phytochemistry 65:525–534

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Ecology 95:8113–8118

    CAS  Google Scholar 

  • Barnes JP, Putnam AR (1987) Role of benzoxazinones in allelopathy by rye. J Chem Ecol 13:889–906

    Article  CAS  Google Scholar 

  • Bergelson J, Kreitman M, Stahl E, Tian D (2001) Evolutionary dynamics of plant R-genes. Science 292:2281–2285

    Article  PubMed  CAS  Google Scholar 

  • Bishop JG, Dean AM, Mitchell-Olds T (2000) Rapid evolution in plant chitinases: molecular targets of selection in plant–pathogen coevolution. Proc Natl Acad Sci USA 97:5322–5327

    Article  PubMed  CAS  Google Scholar 

  • Bochar DA, Friesen JA, Stauffacher CV, Rodwell VW (1999) Biosynthesis of mevalonic acid from acetyl-CoA. In: Cane DE (ed) Isoprenoids, including carotenoids and steroids, vol 2, Comprehensive natural products chemistry. Elsevier, London, pp 15–44

    Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126–4133

    Article  PubMed  CAS  Google Scholar 

  • Bol JF, Linthors HJM, Cornelissen BJ (1990) Plant pathogenesis-related proteins induced by virus infection. Annu Rev Phytopathol 28:113–138

    Article  CAS  Google Scholar 

  • Boller T (1995) Chemoreception of microbial signals by plant cells. Annu Rev Plant Physiol Plant Mol Biol 46:189–214

    Article  CAS  Google Scholar 

  • Bond W, Grundy AC (2001) Non-chemical weed management in organic farming systems. Weed Res 41:383–405

    Article  Google Scholar 

  • Bonello P, Gordon TR, Herms DA, Wood DL, Erbilgin N (2006) Nature and ecological implications of pathogen-induced systemic resistance in conifers: a novel hypothesis. Physiol Mol Plant Pathol 68:95–104

    Article  CAS  Google Scholar 

  • Burdon JJ, Thrall PH (1999) Spatial and temporal patterns in coevolving plant and pathogen associations. Am Nat 153:S15–S33

    Article  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods- a review. Int J Food Microbiol 94:223–253

    Article  PubMed  CAS  Google Scholar 

  • Butterworth JH, Morgan ED (1968) Isolation of a substance that suppresses feeding in locusts. J Chem Soc Chem Commun 28:23–24

    Google Scholar 

  • Capell T, Christou P (2004) Progress in plant metabolic engineering. Curr opin Biotechnol 15:148–154

    Article  PubMed  CAS  Google Scholar 

  • Carter CD, Gianfagna TJ, Sacalis JN (1989) Sesquiterpenes in glandular trichomes of a wild tomato species and toxicity to the Colorado potato beetle. J Agric Food Chem 37:1425–1428

    Article  CAS  Google Scholar 

  • Chappell J (1995) The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol 107:1–6

    PubMed  CAS  Google Scholar 

  • Chen X, Ding J, Ye Y-M, Zhang JS (2002) Bioactive abietane and seco-abietane diterpenoids from Salvia prionitis. J Nat Prod 65:1016–1020

    Article  PubMed  CAS  Google Scholar 

  • Christina JP, Paula JR, Mary G (2003) Systematics and biology of silica bodies in monocotyledons. Bot Rev 69:377–440

    Article  Google Scholar 

  • Chung IM, Ahn JK, Jun SJ (2001) Assessment of allelopathic potential of barnyardgrass (Echinochloa crus-galli) on rice (Oryza sativa L.) cultivars. Crop Prot 20:921–928

    Article  Google Scholar 

  • Chung IM, Kim JT, Kim SH (2006) Evaluation of allelopathic potential and quantification of momilactone A, B from rice hull extracts and assessment of inhibitory bioactivity on paddy field weeds. J Agric Food Chem 54:2527–2536

    Article  PubMed  CAS  Google Scholar 

  • Clark AM, Watson ES, Ashfaq MK, Hufford CD (1987) In vivo efficacy of antifungal oxaaporphine alkaloids in experimental disseminated candidiasis. Pharm Res 4:495–498

    Article  PubMed  CAS  Google Scholar 

  • Clauss MJ, Dietel S, Schubert G, Mitchell-Olds T (2006) Glucosinolate and trichome defenses in a natural Arabidopsis lyrata population. J Chem Ecol 32:2351–2373

    Article  PubMed  CAS  Google Scholar 

  • Crute I, Pink D (1996) The genetics and utilization of pathogen resistance in plants. Plant Cell 8:1747–1755

    PubMed  CAS  Google Scholar 

  • Cvikrova M, Mala J, Hrubcova M, Eder J (2006) Soluble and cell wall-bound phenolics and lignin in Ascocalyx abietina infected Norway spruces. Plant Sci 170:563–570

    Article  CAS  Google Scholar 

  • Czarnota MA, Paul RN, Dayan FE, Nimbal CI, Weston LA (2001) Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. Root exudates. Weed Technol 15:813–825

    Article  CAS  Google Scholar 

  • Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Holub E (1997) La dolce vita: a molecular feast in plant-pathogen interactions. Cell 91:17–24

    Article  PubMed  CAS  Google Scholar 

  • Dangl J, Jones J (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Dayan FE (2006) Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolour. Planta 224:339–346

    Article  PubMed  CAS  Google Scholar 

  • De Meaux J, Cattan-Toupance I, Lavigne C, Langin T, Neema C (2003) Polymorphism of a complex resistance gene candidate family in wild populations of common bean (Phaseolus vulgaris) in Argentina: comparison with phenotypic resistance polymorphism. Mol Ecol 12:263–273

    Article  PubMed  Google Scholar 

  • Delaquis PJ, Mazza G (1995) Antimicrobial properties of isothiocyanates in food preservation. Food Technol 49:73–84

    CAS  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  PubMed  CAS  Google Scholar 

  • Djamin A, Pathak MD (1967) Role of silica in resistance to the Asiatic rice borer, Chilo suppressalis (Walker), in rice varieties. J Econ Entomol 60:347–351

    CAS  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11:539–548

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Tsuzuki E, Kamiunten H, Dongzhi L, Terao H, Matsuo M, Cheng S (2005) Molecular genetic analysis of QTLs for ferulic acid content in dried straw of rice (Oryza sativa L.). Biochem Genet 43:25–34

    Article  PubMed  CAS  Google Scholar 

  • Dussourd DE (2003) Chemical stimulants of leaf-trenching by cabbage loopers: natural products, neurotransmitters, insecticides, and drugs. J Chem Ecol 29:2023–2047

    Article  PubMed  CAS  Google Scholar 

  • Edreva A, Velikova V, Tsonev T, Dagnon S, Gürel A, Aktaş L, Gesheva E (2008) Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol 34:67–78

    CAS  Google Scholar 

  • Ehrlich PR, Raven RH (1964) Butterflies and plants: a study in coevolution. Evolution (Lawrence, Kans) 18:586–608

    Article  Google Scholar 

  • Elliott M, Farnham AW, Janes NF, Needham PH, Pulman DA (1974) Synthetic insecticide with a new order of activity. Nature 248:710–711

    Article  PubMed  CAS  Google Scholar 

  • Fay PK, Duke WB (1977) An assessment of allelopathic potential in Avena germplasm. Weed Sci 25:224–228

    CAS  Google Scholar 

  • Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. CRC Crit Rev Food Sci Nutr 18:123–201

    CAS  Google Scholar 

  • Fernandes GW (1994) Plant mechanical defenses against insect herbivory. Revista Brasileira de Entomologia 38:421–433

    Google Scholar 

  • Field B, Jordan F, Osbourn A (2006) First encounters – deployment of defencerelated natural products by plants. New Phytol 172:193–207

    Article  PubMed  CAS  Google Scholar 

  • Firn RD, Jones CG (2009) A Darwinian view of metabolism: molecular properties determine fitness. J Exp Bot 60:719–726

    Article  PubMed  CAS  Google Scholar 

  • Flor H (1956) The complementary genetic systems in flax and flax rust. Adv Genet 8:29–54

    Article  Google Scholar 

  • Flor H (1971) The current status of gene for gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Francisco IA, Pinotti MHP (2004) Cyanogenic glycosides in plants. Braz Arch Biol Technol 43:487–492

    Article  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  PubMed  CAS  Google Scholar 

  • Futuymaa DJ, Agrawal AA (2009) Macroevolution and the biological diversity of plants and herbivores. PNAS 106:18054–18061

    Article  Google Scholar 

  • Fuzzati N, Wolfender JL, Hostettmann K, Msonthi JD, Mavi S, Molleyres LP (1996) Isolation of antifungal valepotriates from Valeriana capense and the search for Valepotriates in crude Valerianaceae extracts. Phytochem Anal 7:76–85

    Article  CAS  Google Scholar 

  • Gandhi NN, Mukherjee KD (2000) Specificity of papaya lipase in esterification with respect to the chemical structure of substrates. J Agric Food Chem 48:566–570

    Article  PubMed  CAS  Google Scholar 

  • Geoffrey E (1985) Contribution a letude du Robinia Nicou Aublet, au point de vue botanique, chimique et physiologique. Ann Inst Colon Marseille 2:1–7

    Google Scholar 

  • Gierl A, Frey M (2001) Evolution of benzoxazinone biosynthesis andindole production in maize. Planta 213:493–498

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Chen W, Estes B, Chang H, Nawrath C, Metraux J, Zhu T, Katagiri F (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 34:217–228

    Article  PubMed  CAS  Google Scholar 

  • Goldblatt P, Henrich JE, Rudall P (1984) Occurrence of crystals in Iridaceae and allied families and their phylogenetic significance. Ann Mo Bot Gard 71:1013–1020

    Article  Google Scholar 

  • Gruhnert C, Biehl B, Selmar D (1994) Compartmentation of cyanogenic glucosides and their degrading enzymes. Planta 195:36–42

    Article  CAS  Google Scholar 

  • Halama P, van Haluwin C (2004) Antifungal activity of lichen extracts and lichenic acids. Biocontrol 49:95–107

    Article  CAS  Google Scholar 

  • Hammerschmidt R (2005) Phenols and plant–pathogen interactions: the saga continues. Physiol Mol Plant Pathol 66:77–78

    Article  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575–607

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack K, Parker JE (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–193

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB (1993) Introduction to ecological biochemistry, 4th edn. Academic, London, 318pp

    Google Scholar 

  • Harborne JB (1999) Classes and functions of secondary products from plants. In: Walton NJ, Brown D (eds) Chemicals from plants. ICP, London, pp 1–26

    Chapter  Google Scholar 

  • Harmatha J, Dinan L (2003) Biological activities of lignans and stilbenoids associated with plant-insect chemical interactions. Phytochem Rev 2:321–330

    Article  CAS  Google Scholar 

  • Hartmans KJ, Diepenhorst P, Bakker W, Gorris LGM (1995) The use of carvone in agriculture, sprout suppression of potatoes and antifungal activity against potato tuber and other plant diseases. Ind Crops Prod 4:3–13

    Article  CAS  Google Scholar 

  • Hawkes JG (1977) The importance of wild germplasm in plant breeding. Euphytica 26:615–621

    Article  Google Scholar 

  • Heath M (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  PubMed  CAS  Google Scholar 

  • Hirel B, Bertin P, Quillere I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125:1258–1270

    Article  PubMed  CAS  Google Scholar 

  • Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot (Lond) 96:1027–1046

    Article  CAS  Google Scholar 

  • Holdren JP, Ehrlich PR (1974) Human population and the global environment. Am Sci 62:282–292

    PubMed  CAS  Google Scholar 

  • Holland JN, Chamberlain SA, Horn KC (2009) Optimal defense theory predicts investment in extra floral nectar resources in an ant–plant mutualism. J Ecol 97:89–96

    Article  Google Scholar 

  • Holub EB (2001) The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet 2:516–527

    Article  PubMed  CAS  Google Scholar 

  • Hongo H, Karel AK (1986) Effect of plant extracts on insect pests of common beans. J Appl Entomol 102:164–169

    Article  Google Scholar 

  • Howard JB, Glazer AN (1969) Papaya lysozyme: terminal sequences and enzymatic properties. J Biol Chem 244:1399–1409

    PubMed  CAS  Google Scholar 

  • Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48:121–127

    Article  CAS  Google Scholar 

  • Ikeda T, Enda N, Yamane A, Oda K, Toyoda T (1980) Attractants for the Japanese pine sawyer, Monochamus alternatus Hope (Coleoptera: Cerambycidae). Appl Entomol Zool 15:358–361

    CAS  Google Scholar 

  • Inderjit S, Gross E (2002) Plant phenolics: potential role in aquatic and terrestrial ecosystems. In: Martens S, Treutter D, Forkmann G (eds) Polyphenols 2000. Technische Universität München, Freising Germany, pp 206–234

    Google Scholar 

  • Ingham JL (1973) Disease resistance in higher plants. The concept of pre-infectional and post-infectional resistance. Phytopathol Z 78:314–335

    Article  CAS  Google Scholar 

  • Ishiki K, Tokuora K, Mori R, Chiba S (1992) Preliminary examination of allyl isothiocyanate vapour for food preservation. Biosci Biotechnol Biochem 56:1476–1477

    Article  Google Scholar 

  • Jackson A, Taylor C (1996) Plant–microbe interactions: life and death at the interface. Plant Cell 8:1651–1668

    PubMed  CAS  Google Scholar 

  • Jaenike J (1977) An hypothesis to account for the maintenance of sex within populations. Evol Theory 3:191–194

    Google Scholar 

  • Jespers ABK, de Waard MA (1993) Natural products in plant protection. Neth J PIant Pathol 3(Suppl):109–117

    Article  Google Scholar 

  • Jez JM, Bowman ME, Noel JP (2002) Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity. Proc Natl Acad Sci 99:5319–5324

    Article  PubMed  CAS  Google Scholar 

  • Johnson MT, Smith SD, Rausher MD (2009) Plant sex and the evolution of plant defenses against herbivores. Proc Natl Sci USA 106:18079–18084

    Article  CAS  Google Scholar 

  • Jones JD (2001) Putting knowledge of plant disease resistance genes to work. Curr Opin Plant Biol 4:281–287

    Article  PubMed  CAS  Google Scholar 

  • Jones D, Jones J (1997) The role of leucine-rich repeat proteins in plant defences. Adv Bot Res 24:90–167

    Google Scholar 

  • Jordan N (1993) Prospects for weed control through crop interference. Ecol Appl 3:84–91

    Article  Google Scholar 

  • Junaid A, Fatima Z, Mujib A, Sharma MP (2010) Variations in vinblastine production at different stages of somatic embryogenesis, embryo and field grown plantlets of Catharanthus roseus L (G) Don, as revealed by HPLC. In Vitro Cell Dev Biol Plant 46:348–353

    Article  Google Scholar 

  • Katoh S, Hyatt D, Croteau R (2004) Altering product outcome in Abies grandis (−) limonene synthase and (−)-limonene/(−)-α-pinene synthase by domain swapping and directed mutagenesis. Arch Biochem Biophys 425:65–76

    Article  PubMed  CAS  Google Scholar 

  • Kaufman PB, Takeoka Y, Carlson TJ, Bigelow WC, Jones JD, Moore PH, Ghosheh NS (1979) Studies on silica deposition in sugarcane (Saccharum spp.) using scanning electron microscopy, energy dispersive X-ray analysis, neutron activation analysis, and light microscopy. Phytomorphology 29:185–193

    Google Scholar 

  • Keeling IC, Bohlmann J (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170:657–675

    Article  PubMed  CAS  Google Scholar 

  • Keeling CI, Weisshaar S, Lin RPC, Bohlmann J (2008) Functional plasticity of paralogous diterpene synthases involved in conifer defence. Proc Natl Acad Sci USA 105(3):1085–1090

    Article  PubMed  CAS  Google Scholar 

  • Keen NT, Bent A, Staskawicz B (1993) Plant disease resistance genes: interactions with pathogens and their improved utilization to control plant diseases. In: Chet I (ed) Biotechnology in Plant Disease Control. Wiley-Liss, New York, pp 65–68

    Google Scholar 

  • Kehr J (2006) Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. J Exp Bot 57:767–774

    Article  PubMed  CAS  Google Scholar 

  • Khan ZR, Pickett JA, van den Berg J, Wadhams LJ, Woodcock CM (2000) Exploiting chemical ecology and species diversity: stem borer and striga control for maize and sorghum in Africa. Pest Manag Sci 56:957–962

    Article  CAS  Google Scholar 

  • Kim JS, Kim YO, Ryu HJ, Kwak YS, Lee JY, Kang H (2003) Isolation of stress-related genes of rubber particles and latex in fig tree (Ficus carica) and their expression by abiotic stress of plant hormone treatments. Plant Cell Physiol 44:412–414

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ 27:675–684

    Article  CAS  Google Scholar 

  • Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV (2002) Selection in the evolution of gene duplications. Genome Biol 3:1–9

    Article  Google Scholar 

  • Kossel A (1991) Archives of analytical physiology. Physiol Abteilung 181–186

    Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853

    Article  PubMed  CAS  Google Scholar 

  • Lebot V, Ivancic A, Abraham K (2005) The geographical distribution of allelic diversity, a practical means of preserving and using minor root crop genetic resources. Exp Agric 41:475–489

    Article  Google Scholar 

  • Levin DA (1975) Pest pressure and recombination systems in plants. Am Nat 109:437–451

    Article  Google Scholar 

  • Link KP, Dickson AD, Walker JC (1992) Further observations on the occurrence of Protocatechuic acid in pigmented onion scales and its relation to disease resistance in the onion. J Biol Chem 84:719–725

    Google Scholar 

  • Lovett JV (1991) Changing perceptions of allelopathy and biological-control. Biol Agric Hortic 8:89–100

    Article  Google Scholar 

  • Lukacova V, Polonsky J, Moretti C, Pettit GR, Schmidt JM (1982) Isolation and structure of 14,15β-epoxyprieurianin from the South American tree Guarea guidona. J Nat Prod 45:288–294

    Article  CAS  Google Scholar 

  • Lynn KR, Clevette-Radford NA (1987) Biochemical properties of lattices from the Euphorbiaceae. Phytochemistry 26:939–944

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  PubMed  CAS  Google Scholar 

  • Macias FA, Galindo JCG, Molinillo JMG, Castellano D, Velasco RF, Chinchilla D (1999) Developing new herbicide models from allelochemicals. Pest Sci 55:662–665

    Article  CAS  Google Scholar 

  • Macías FA, Molinillo JMG, Varela RM, Galindo JCG (2007) Allelopathy – a natural alternative for weed control. Pest Manag Sci 63:327–348

    Article  PubMed  CAS  Google Scholar 

  • Malamy J, Carr J, Klessig D, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004

    Article  PubMed  CAS  Google Scholar 

  • Manneh B, Stam P, Struik PC, Bruce-Oliver S, Van Eeuwijk FA (2007) QTL-based analysis of genotype-by-environment interaction for grain yield of rice in stress and non-stress environments. Euphytica 156:213–226

    Article  Google Scholar 

  • Martin G (1999) Functional analysis of plant disease resistance genes and their downstream effectors. Curr Opin Plant Biol 2:273–279

    Article  PubMed  CAS  Google Scholar 

  • Mary AL (2006) The nature-versus-nurture debate on bioactive phytochemicals: the genome versus terroir. J Sci Food Agric 86:2510–2515

    Article  CAS  Google Scholar 

  • Mason HE, Spaner D (2006) Competitive ability of wheat in conventional and organic management systems: a review of the literature. Can J Plant Sci 86:333–343

    Article  Google Scholar 

  • McDowell J, Dangl J (2000) Signal transduction in the plant immune response. Trends Biochem Sci 25:79–82

    Article  PubMed  CAS  Google Scholar 

  • McKey D (1979) The distribution of secondary compounds within plants. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interaction with secondary plant metabolites. Academic, Orlando, pp 56–134

    Google Scholar 

  • McMahon JM, White WLB, Sayre RT (1995) Cyanogenesis in cassava (Manihot esculanta Crantz). J Exp Bot 46:731–741

    Article  CAS  Google Scholar 

  • McNaughton SJ, Tarrants JL (1983) Grass leaf silicification: natural selection for an inducible defense against herbivores. Proc Natl Acad Sci 80:790–791

    Article  PubMed  CAS  Google Scholar 

  • Metraux J-P, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004–1006

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    PubMed  CAS  Google Scholar 

  • Milkowski C, Strack D (2004) Serine carboxypeptidase-like a cyltransferases. Phytochemistry 65:517–524

    Article  PubMed  CAS  Google Scholar 

  • Mithen R (1992) Leaf glucosinolate profile and their relationship to pest and disease resistance in oilseed rape. Euphytica 63:71–83

    Article  CAS  Google Scholar 

  • Moffett P, Farnham G, Peart J, Baulcombe D (2002) Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J 21:4511–4519

    Article  PubMed  CAS  Google Scholar 

  • Moore JP, Westall KL, Ravenscroft N, Farrant JM, Lindsey GG, Brandt WF (2005) The predominant polyphenol in the leaves of the ressurrection plant Myrothamnus flabellifolius, 3,4,5- tri-O-galloylquinic acid, protects membranes against desiccation and free radical induced oxidation. Biochem J 385:301–308

    Article  PubMed  CAS  Google Scholar 

  • Morita-Yamamuro C, Tsutsui T, Sato M, Yoshioka H, Tamaoki M, Ogawa D, Matsuura H, Yoshihara T, Ikeda A, Uyeda I, Yamaguchi J (2005) The Arabidopsis gene CAD1 controls programmed cell death in the plant immune system and encodes a protein containing a MACPF domain. Plant Cell Physiol 46:902–912

    Article  PubMed  CAS  Google Scholar 

  • Morrisey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63:708–724

    Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1:2–9

    Article  Google Scholar 

  • Muller C, Agerbirk N, Olsen CE, Boeve JL, Schaffner URS, Brakefield PM (2001) Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J Chem Ecol 27:2505–2516

    Article  PubMed  CAS  Google Scholar 

  • Müller-Schärer H, Scheepens PC, Greaves MP (2000) Biological control of weeds in European crops: recent achievements and future work. Weed Res 40:83–98

    Article  Google Scholar 

  • Namaganda M, Krekling T, Lye KA (2009) Leaf anatomical characteristics of Ugandan species of Festuca L. (Poaceae). S Afr J Bot 75:52–59

    Article  Google Scholar 

  • Nash MA, Hoffmann AA, Thomson LJ (2010) Identifying signature of chemical applications on indigenous and invasive nontarget arthropod communities in vineyards. Ecol Appl 20(6):1693–1703

    Article  PubMed  Google Scholar 

  • Nimchuk Z, Rohmer L, Chang J, Dangl J (2001) Knowing the dancer from the dance: R-gene products and their interactions with other proteins from host and pathogen. Curr Opin Plant Biol 4:288–294

    Article  PubMed  CAS  Google Scholar 

  • O’Brien PJ, Herschlag D (1999) Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol 6:R91–R105

    Article  PubMed  Google Scholar 

  • Ober D, Hartmann T (1999) Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase. Proc Natl Acad Sci USA 96:14777–14782

    Article  PubMed  CAS  Google Scholar 

  • Olsen KM, Gross BL (2008) Detecting multiple origins of domesticated crops. Proc Natl Acad Sci 105(37):13701–13702

    Article  PubMed  CAS  Google Scholar 

  • Osbourn AE (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821–1831

    PubMed  CAS  Google Scholar 

  • Paland S, Lynch M (2006) Transitions to asexuality result in excess amino acid substitutions. Science 311:990–992

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulou K, Melton RE, Leggett M, Daniels MJ, Osbourn AE (1999) Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci USA 22:12923–12928

    Article  Google Scholar 

  • Park SU, Yu M, Facchini PJ (2002) Antisense RNA-mediated suppression of benzophenanthridine alkaloid biosynthesis in transgenic cell cultures of California poppy. Plant Physiol 128:696–706

    Article  PubMed  CAS  Google Scholar 

  • Pechan T, Ye L, Chang Y, Mitra A, Lin L (2000) A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotype resistant to fall armyworm and other Lepidoptera. Plant Cell 12:1031–1040

    PubMed  CAS  Google Scholar 

  • Penninckx I, Eggermont K, Terras F, Thomma B, De Samblanx G, Buchala A, Métraux JP, Manners J, Broekaert W (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid–independent pathway. Plant Cell 8:2309–2323

    PubMed  CAS  Google Scholar 

  • Pérez FJ, Ormeño-Núñez J (1991) Differences in hydroxamic acid contents in roots and root exudates of wheat (Triticum aestivum L.) and rye (Secale cereale L.): possible role in allelopathy. J Chem Ecol 17:1037–1043

    Article  Google Scholar 

  • Prasanta C, Bhowmika I (2003) Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot 22:661–671

    Article  Google Scholar 

  • Raffa KF, Berryman AA, Simasko J, Teal W, Wong BL (1985) Effects of grand fir monoterpenes on the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae). Environ Entomol 14:552–556

    CAS  Google Scholar 

  • Rani A, Bhat MN, Singh BP (2006) Efficacy of neem formulations against late blight of potato in sub-tropical plains. Crop Res 31:179–180

    Google Scholar 

  • Rathjen JP, Moffet P (2003) Early signal transduction events in specific plant disease resistance. Curr Opin Plant Biol 6:300–306

    Article  PubMed  CAS  Google Scholar 

  • Rees SB, Harborne JB (1985) The role of sesquiterpene lactones and phenolics in the chemical defense of the chicory plant. Phytochemistry 24:2225–2231

    Article  CAS  Google Scholar 

  • Rhoades DF (1977) Integrated antiherbivore, antidesiccant and ultraviolet screening property. Biochem Syst Ecol 5(4):281–290

    Article  CAS  Google Scholar 

  • Rhoades DF (1979) Evolution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interaction with secondary plant metabolites. Academic, Orlando, pp 4–55

    Google Scholar 

  • Rice EL (1974) Allelopathy. Academic, New York

    Google Scholar 

  • Rohdich F, Bacher A, Eisenreich W (2005) Isoprenoid biosynthetic pathways as anti-infective drug targets. Biochem Soc Trans 33:785–791

    Article  PubMed  CAS  Google Scholar 

  • Rönnberg-Wästljung AC, Glynn C, Weih M (2005) QTL analyses of drought tolerance and growth for a Salix dasyclados Salix viminalis hybrid in contrasting water regimes. Theor Appl Genet 110:537–549

    Article  PubMed  Google Scholar 

  • Ross AF (1961) Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340–358

    Article  PubMed  CAS  Google Scholar 

  • Rudall PJ, Caddick LR (1994) Investigation of the presence of phenolic compounds in monocotyledonous cell walls, using UV fluorescence microscopy. Ann Bot 74:483–491

    Article  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    PubMed  CAS  Google Scholar 

  • Saby JK, Bhat SG, Prasada Rao UJS (2003) Biochemical characterization of sap (latex) of a few Indian mango varieties. Phytochemistry 62:13–19

    Article  Google Scholar 

  • Sánchez-Moreiras AM, Weiss OA, Reigosa-Roger MJ (2004) Allelopathic evidence in the Poaceae. Bot Rev 69:300–319

    Article  Google Scholar 

  • Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883

    Article  CAS  Google Scholar 

  • Schenk P, Kazan K, Wilson I, Anderson J, Richmond T, Somerville S, Manners J (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    Article  PubMed  CAS  Google Scholar 

  • Schlösser E (1994) Preformed phenols as resistance factors. Acta Hort (ISHS) 381:615–630

    Google Scholar 

  • Schmeller T, Latz-Bruning B, Wink M (1997) Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defense against microorganisms and herbivores. Phytochemistry 44:257–266

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Sunyaev S, Bork P, Dandekar T (2003) Metabolites: a helping hand for pathway evolution? Trends Biochem Sci 28:336–341

    Article  PubMed  CAS  Google Scholar 

  • Scott JG, Wen Z (2001) Cytochromes P450 of insects: the tip of the iceberg. Pest Manag Sci 57:958–967

    Article  PubMed  CAS  Google Scholar 

  • Sertkaya E, Kaya K, Soylu S (2010) Acaricidal activities of the essential oils from several medicinal plants against the carmine spider mite (Tetranychus cinnabarinus Boisd.) (Acarina: Tetranychidae). Ind Crops Prod 31:107–112

    Article  CAS  Google Scholar 

  • Sessa R, Benett MH, Lewin MJ, Mansfirls JW, Beale MH (2000) Metabolite profiling of sesquiterpene lactones from Lactuca species. J Biol Chem 275:26877–26884

    PubMed  CAS  Google Scholar 

  • Shonle I, Bergelson J (2000) Evolutionary ecology of the tropane alkaloids of Datura stramonium L. (Solanaceae). Evolution 54:778–788

    PubMed  CAS  Google Scholar 

  • Sirvent TM, Gibson DM (2002) Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors. Physiol Mol Plant Pathol 60:311–320

    CAS  Google Scholar 

  • Skadhauge B, Thomsen K, vonWettstein D (1997) The role of barley testa layer and its flavonoid content in resistance to Fusarium infections. Hereditas 126:147–160

    Article  CAS  Google Scholar 

  • Slusarenko AJ, Patel A, Portz D (2008) Control of plant diseases by natural products: Allicin from garlic as a case study. Eur J Plant Pathol 121(3):313–322

    Article  Google Scholar 

  • Snook ME (1994) Characterization and quantification of hexadecyl, octadecyl and eicosyl esters of p-coumaric acid in the vine and root latex of sweet potato [Ipomoea batatas (L.) Lam.]. J Agric Food Chem 42:2589–2595

    Article  CAS  Google Scholar 

  • Soylu EM, Soylu S, Kurt S (2006) Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia 161:119–128

    Article  PubMed  CAS  Google Scholar 

  • Soylu S, Yigitbas H, Soylu EM, Kurt S (2007) Antifungal effects of essential oils from oregano and fennel on Sclerotinia sclerotiorum. J Appl Microbiol 103:1021–1030

    Article  PubMed  CAS  Google Scholar 

  • Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J (1999) Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400:667–671

    Article  PubMed  CAS  Google Scholar 

  • Staskawicz B, Ausubel F, Baker B, Ellis J, Jones J (1995) Molecular genetics of plant disease resistance. Science 268:661–667

    Article  PubMed  CAS  Google Scholar 

  • Staudinger H, Ruzicka L (1924) Uber die wirksamen Bestandteile des dalmatinischen Insektenpulvers. Helv Chim Acta 7:177

    Article  CAS  Google Scholar 

  • Stehle F, Brandt W, Milkowski C, Strac D (2006) Structure determinants and substrate recognition of serine carboxypeptidase-like acyltransferases from plant secondary metabolism. FEBS Lett 580:6366–6374

    Article  PubMed  CAS  Google Scholar 

  • Strauss SY, Rudgers JA, Lau JA, Irwin RE (2002) Direct and ecological costs of resistance to herbivory. Trends Ecol Evol 17:278–285

    Article  Google Scholar 

  • Tang S, Knapp SJ (2003) Microsatellites uncover extraordinary diversity in native American land races and wild populations of cultivated sunflower. Theor Appl Genet 106(6):990–1003

    PubMed  CAS  Google Scholar 

  • Tattersall DB, Bak S, Jones PR, Olsen CE, Nielsen JK, Hansen ML, Hoj PB, Moller BL (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293:1826–1828

    Article  PubMed  CAS  Google Scholar 

  • Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163:547–561

    Article  CAS  Google Scholar 

  • Tesar MB, Marble VL (1988) Alfalfa establishment. In: Hanson AA, Barnes DK, Hill RR Jr (eds) Alfalfa and alfalfa improvement, Agron Monogr 29. ASA, CSSA, and SSSA, Madison, WI, pp 303–322

    Google Scholar 

  • Thomma B, Pennickx I, Broekaert W, Cammue B (2001) The complexity of disease signalling in Arabidopsis. Curr Opin Immunol 13:63–68

    Article  PubMed  CAS  Google Scholar 

  • Trapp SC, Croteau RB (2001) Genomic organization of plant terpene synthases and molcular evolutionary implications. Genetics 158:811–832

    PubMed  CAS  Google Scholar 

  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4(3):147–157

    Article  CAS  Google Scholar 

  • Tripathi P, Dubey NK (2004) Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol Technol 32:235–245

    Article  Google Scholar 

  • Tyler BM (2001) Genetics and genomics of the oomycete–host interface. Trends Genet 17:611–614

    Article  PubMed  CAS  Google Scholar 

  • van Wees S, de Swart E, van Pelt J, van Loon L, Pieterse C (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:8711–8716

    Article  PubMed  Google Scholar 

  • Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Curr Opin Plant Biol 13:181–187

    CAS  Google Scholar 

  • Vetter J (2000) Plant cyanogenic glycosides. Toxicon 38(1):11–36

    Article  PubMed  CAS  Google Scholar 

  • Wagner A (1998) The fate of duplicated genes: loss or new function? Bioessays 20:785–788

    Article  PubMed  CAS  Google Scholar 

  • Wallis C, Eyles A, Chorbadjian R, Mc Spadden Gardener B, Hansen R, Cipollini D, Herms DA, Bonello P (2008) Systemic induction of phloem secondary metabolism and its relationship to resistance to a canker pathogen in Austrian pine. New Phytol 177:767–778

    Article  PubMed  CAS  Google Scholar 

  • Walton JD (1994) Deconstructing the cell wall. Plant Physiol 104:1113–1118

    PubMed  CAS  Google Scholar 

  • Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J (2004) Proteomics of cucurbit phloem exudates reveals a network of defense proteins. Phytochemistry 65:1795–1804

    Article  PubMed  CAS  Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3(10):1085–1094

    PubMed  CAS  Google Scholar 

  • Wasternack C, Parthier B (1997) Jasmonate-signaled plant gene expression. Trends Plant Sci 2:302–307

    Article  Google Scholar 

  • Wink M (2004) Phytochemical diversity of secondary metabolites. In: Encyclopedia of plant and crop science. Taylor and Francis, Amsterdam, pp 915–919

    Google Scholar 

  • Woodhead S, Bernays EA (1987) The chemical basis of resistance of Sorghum bicolor to attack by Locusta migratoria. Entomol Exp Appl 24(2):123–144

    Article  Google Scholar 

  • Wu H, Pratley J, Lemerle D, Haig T (2001) Allelopathy in wheat (Triticum aestivum). Ann Appl Biol 139:1–9

    Article  CAS  Google Scholar 

  • Yang X, Owens TG, Scheffler BE, Weston LA (2004) Manipulation of root hair development and sorgoleone production in sorghum seedlings. J Chem Ecol 30:199–213

    Article  PubMed  CAS  Google Scholar 

  • Yun BW, Loake GJ (2002) Plant defence responses: current status and future exploitation. J Plant Biotechnol 4(1):1–6

    Google Scholar 

  • Zong N, Wang C (2006) Larval feeding induced defensive responses in tobacco: comparison of two sibling species of Helicoverpa with different diet breadths. Planta 226:215–224

    Article  CAS  Google Scholar 

  • Zulak KG, Bohlmann J (2010) Terpenoid biosynthesis and specialized vascular cells of conifer defense. J Integr Plant Biol 52(1):86–97

    Article  PubMed  CAS  Google Scholar 

  • Zwenger S, Basu C (2008) Plant terpenoids: applications and potentials. Biotechnol Mol Biol Rev 3:1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kambaska Kumar Behera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Behera, K.K., Bist, R. (2014). Allelopathy for Pest Control. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-00915-5_6

Download citation

Publish with us

Policies and ethics