Skip to main content

Phytoremediation, Transgenic Plants and Microbes

  • Chapter
  • First Online:
Book cover Sustainable Agriculture Reviews

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 13))

Abstract

Phytoremediation is a promising technology using plants and microbes to clean up contaminated air, soil, and water. Pollutants pose a global threat for agricultural production, productivity, wildlife and human health. Environmental pollution increasing in many parts of the world. Many methods of preventing, removing and or correcting the negative effects of pollutants exist but their application has either been poorly implemented or not at all. For phytoremediation selected or engineered plants and microbes are used to treat efficiently low to moderate levels of contamination.

Phytoremediation uses the age-long abilities of selected plants and microbes to remove pollutants from the environment. Phytoremediation will probably become a commercially available technology in many parts of the world including India. Currently $6–8 billion a year is spent on environmental cleanup in the US. In the United Kingdom £4 million are spent on air pollution control and £1.5 million on water-treatment plant, and this cost is expected to increase by 50 % over the next 5 years. The cost of phytoremediation has been estimated as $25–$100 per ton of soil, and $0.60–$6.00 per 1,000 gallons of polluted water, with remediation of organics being cheaper than remediation of metals. Phytoremediation also offers a permanent in situ remediation rather than simply translocating the problem. This review focuses on the major concerns such as phytoremediation technologies, plant and microbes in phytoremediation and, ecological considerations of phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AM:

Arbuscular Mycorrhizae

EDTA:

Ethylene diamine tetra acetic acid

PCBs:

Polychlorinated biphenyls

PCE:

Tetrachloroethylene

TCE:

Trichloroethylene

TNT:

2,4,6-Trinitrotoluene

References

  • Aafi NE, Brhada F, Dary M, Maltouf AF, Pajuelo E (2012) Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizo-bacterium Serratiasp. MSMC 541. Int J Phytoremediation 14:261–274

    PubMed  Google Scholar 

  • Abou-Shanab R, Ghanem N, Ghanem K, Al-Kolaibe A (2007) Phytoremediation potential of crop and wild plants for multi-metalcontaminated soils. Res J Agric Biol Sci 3(5):370–376

    CAS  Google Scholar 

  • Agamuthua P, Abioye OP, Abdul AA (2010) Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas. J Hazard Mater 179:891–894

    Google Scholar 

  • Aken BV (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26:225–227

    PubMed  Google Scholar 

  • Aken BV, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: New trends and promises. Environ Sci Technol 44:2767–2776

    PubMed  Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresour Technol 79:273–276

    PubMed  CAS  Google Scholar 

  • Anderson TA, Coats JE (1994) Bioremediation through rhizosphere technology. ACS Symposium Series: 563. Am Chem Soc, Washington, DC

    Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Plant roots and associated microbes clean contaminated soil. Environ Sci Technol 27:2630–2636

    CAS  Google Scholar 

  • Angle JS, Heckman JR (1986) Effect of soil pH and sewage sludge on VA mycorrhizal infection of soybeans. Plant Soil 93:437–441

    Google Scholar 

  • Babu AG, Reddy S (2011) Dual inoculation of arbuscular mycorrhizal and phosphate solubilizing fungi contributes in sustainable maintenance of plant health in fly ash ponds. Water Air Soil Pollut 219:3–10

    CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyper accumulate metallic elements: a review of their distribution, ecology and phytochemistry. Bio-Recovery 1:81–126

    CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    PubMed  CAS  Google Scholar 

  • Barka EA, Gognies S, Nowak J, Audran JC, Belarbi A (2002) Inhibitory effect of endophytic bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142

    Google Scholar 

  • Barrutia O, Garbisu C, Hernandez-Allica J, Garcıa-Plazaola JI, Becerril JM (2010) Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L. Environ Pollut 158:1710–1715

    PubMed  CAS  Google Scholar 

  • Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyper accumulator plant Alyssum bertolonii. Microb Ecol 53:306–316

    PubMed  CAS  Google Scholar 

  • Beolchini F, Dell’Anno A, Propris LD, Ubaldini S, Cerrone F, Danovaro R (2009) Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals. Chemosphere 74:1321–1326

    PubMed  CAS  Google Scholar 

  • Best EPH, Zappi ME, Fredrickson HL, Sprecher SL, Larson SL, Ochman M (1997) Screening of aquatic and wetland plant species for phytoremediation of explosives contaminated groundwater for the Iowa Army Ammuntion Plant. Ann NY Acad Sci 829:179–194

    PubMed  CAS  Google Scholar 

  • Bi R, Schlaak M, Siefert E, Lord R, Connolly H (2011) Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Chemosphere 83:318–326

    PubMed  CAS  Google Scholar 

  • Brooks RR, Chambers MF, Larry NJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362

    Google Scholar 

  • Burken JG (2003) Uptake and metabolism of organic compounds: green-liver model. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, New York

    Google Scholar 

  • Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31:1399–1402

    CAS  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    PubMed  CAS  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyper accumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443

    PubMed  CAS  Google Scholar 

  • Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25:1829–1836

    CAS  Google Scholar 

  • Chaudhry TM, Khan AG (2002) Role of symbiotic organisms in sustainable plant growth on contaminated industrial sites. In: Rajak RC (ed) Biotechnology of microbes and sustainable utilization. Scientific Pub.(India), Jodhpur, pp 270–279

    Google Scholar 

  • Chaudhry TM, Khan AG (2003) Heavy metal accumulation and tolerance in mycorrhizal metalophytes from industrial wastelands of New South Wales, Australia. Uppsala, Sweden: Abstract international Conference on Mycorrhiza (ICOM II)

    Google Scholar 

  • Chaudhry TM, Hayes WJ, Khan AG, Khoo CS (1998) Phytoremediation focusing on hyperaccumulator plants that remediate metal-contaminated soils. Australas J Ecotoxicol 4:37–51

    CAS  Google Scholar 

  • Cherian S, Margaridaoliveira M (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39(24):9377–9390

    PubMed  CAS  Google Scholar 

  • Citterio S, Prato N, Fumagalli P, Aina R, Massa N, Santagostino A, Sgorbati S, Berta G (2005) The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere 59:21–29

    PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    PubMed  CAS  Google Scholar 

  • Coleman J, Blake-Kalff M, Davies T (1997) Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 2:144–151

    Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    PubMed  CAS  Google Scholar 

  • Conrath U, Pieterse CM, Mauch-Mani B (2002) Priming in plant pathogen interactions. Trends Plant Sci 7:210–216

    PubMed  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13(9):393–397

    CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere, Advanced series in agricultural science 15. Springer, Berlin

    Google Scholar 

  • Dec J, Bollag JM (1990) Detoxification of substituted phenols by oxidoreductive enzymes through polymerization reactions. Arch Environ Contam Toxicol 19:543–550

    CAS  Google Scholar 

  • Dec J, Bollag JM (1994) Use of plant material for the decontamination of water polluted with phenols. Biotechnol Bioeng 44:1132–1139

    PubMed  CAS  Google Scholar 

  • Di Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31:233–241

    PubMed  Google Scholar 

  • Dowling DN, Doty SL (2009) Improving phytoremediation through biotechnology. Curr Opin Biotechnol 20:204–206

    PubMed  CAS  Google Scholar 

  • Ensley BD (2000) Rationale for use of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 3–11

    Google Scholar 

  • Environmental Protection Agency (EPA) (1998) A citizen’s guide to phytoremediation. EPA Publication, Washington, DC, 542-F-98-011

    Google Scholar 

  • Environmental Protection Agency (EPA) (1999) Phytoremediation resource guide. EPA Publication, Washington, DC, 542-B-99-003

    Google Scholar 

  • Environmental Protection Agency (EPA, USA) (2001) Groundwater pump and treat systems: summary of selected cost and performance information at superfund-financed sites. EPA 542-/R-01-021a, 76 pp

    Google Scholar 

  • Evangelou MWH, Bauer U, Ebel M, Schaeffer A (2007) The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum. Chemosphere 68:345–353

    PubMed  CAS  Google Scholar 

  • Ferro AM, Sims RC, Bugbee B (1994) Hycrest crested wheat grass accelerates the degradation of pentachlorophenol in soil. J Environ Qual 23:272–279

    PubMed  CAS  Google Scholar 

  • Fletcher JS, Hedge RS (1995) Release of phenols by perennial plant roots and their potential importance in bioremediation. Chemosphere 31:3009–3016

    CAS  Google Scholar 

  • Fletcher JS, McFarlane JC, Pfleeger T, Wickliff C (1990) Influence of root exposure concentration on the fate of nitrobenzene in soybean. Chemosphere 20:513–523

    CAS  Google Scholar 

  • Fletcher JS, Paula KD, Ramesh SH (1995) Biostimulation of PCB degrading bacteria by compounds release from plant roots. Bioremediation of recalcitrant organics. Battelle Press, Columbus, pp 131–136

    Google Scholar 

  • Fletcher RS, Slimmon T, McAuley CY, Kott LS (2005) Heat stress reduces the accumulation of rosmarinic acid and the total antioxidant capacity in spearmint (Mentha spicata L). J Sci Food Agric 85:2429–2436

    CAS  Google Scholar 

  • Frova C (2003) The plant glutathione transferase gene family: genomic structure, functions, expression, and evolution. Physiol Plant 119:469–479

    CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its by products. Appl Ecol Environ Res 3(1):1–18

    Google Scholar 

  • Glass DJ (1999) US and international markets for phytoremediation, 1999–2000. D Glass Associates, Needham

    Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    PubMed  CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, Mc Conkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    PubMed  CAS  Google Scholar 

  • Hughes JS, Shanks J, Vanderford M, Lauritzen J, Bhadra R (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Environ Sci Technol 31:266–271

    CAS  Google Scholar 

  • Idris A, Inane B, Hassan MN (2004) Overview of waste disposal and landfills/dumps in Asian countries. J Mater Cycl Waste Manag 6:104–110

    Google Scholar 

  • Kassel AG, Ghoshal D, Goyal A (2002) Phytoremediation of trichloroethylene using hybrid poplar. Physiol Mol Plants 8(1):3–10

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    PubMed  CAS  Google Scholar 

  • Knabel DB, Vestal JR (1992) Effects of intact rhizosphere microbial communities on the mineralization of surfactants in surface soils. Can J Microbiol 38:643–653

    Google Scholar 

  • Knox RC, Canter LW, Knicannon DF, Stover EL, Ward CH (1984) State-of-the Art of Aquifer Restoration. EPA 600/2-84/182a&b (NTIS PB85-181071 and PB85-181089)

    Google Scholar 

  • Kramer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    PubMed  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Google Scholar 

  • Kramer PA, Zabowski D, Scherer G, Everett RL (2000) Native plant restoration of copper mine tailings: II. Field survival, growth and nutrient uptake. J Environ Qual 29:1770–1777

    CAS  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    CAS  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29(5):1232–1238

    PubMed  CAS  Google Scholar 

  • Lai HY, Chen SW, Chen ZS (2008) Pot experiment to study the uptake of Cd and Pb by three Indian mustard (Brassica juncea) grown in artificially contaminated soils. Int J Phytoremediation 10:91–105

    CAS  Google Scholar 

  • Le Duc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, Abdel Samie M, Chiang C-Y, Tagmount A, de Souza MP, Neuhierl B, Bock A, Caruso JA, Terry N (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Google Scholar 

  • Lebeau T, Braud A, Jezequel K (2008) Performance of bio-augmentation assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522

    PubMed  CAS  Google Scholar 

  • LeDuc DL, Abdel Samie M, Montes-Bayon M, Wu CP, Reisinger SJ, Terry N (2006) Overexpressing both ATP sulfurylase and selenocysteine methyl transferase enhances selenium phytoremediation traits in Indian mustard. Environ Pollut 144:70–76

    PubMed  CAS  Google Scholar 

  • Lee TH, Byun IG, Kim YO, Hwang IS, Park TJ (2006) Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate. Water Sci Technol 53(4–5):263–272

    PubMed  CAS  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (as hyperaccumulator) in as contaminated soils. Environ Pollut 139:1–8

    PubMed  CAS  Google Scholar 

  • Li YM, Chaney RL, Brewer E, Roseberg RJ, Angle JS, Baker A, Reeves R, Nelkin J (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    CAS  Google Scholar 

  • Liao JP, Lin XG, Cao ZH, Shi YQ, Wong MH (2003) Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere 50:847–853

    PubMed  CAS  Google Scholar 

  • Liu Y, Zhu YG, Chen BD, Christie P, Li XL (2005) Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the as hyperaccumulator fern Pteris vittata L. Mycorrhiza 15:187–192

    PubMed  CAS  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21(583):606

    Google Scholar 

  • Luo SL, Chen L, Chen JI, Xiao X, Xu TY, Wan Y, Rao C, Liu CB, Liu YT, Lai C, Zeng GM (2011) Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyper accumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85:1130–1138

    PubMed  CAS  Google Scholar 

  • Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C, Liu Y (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93:1745–1753

    PubMed  CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011a) Plant growth promoting rhizobacteriaand endophytes accelerate phytoremediation of metalliferous soils. Biotechnol 29:248–258

    CAS  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011b) Inoculation of endophytic bacteria on host and non host plants – effects on plant growth and Ni uptake. J Hazard Mater 196:230–237

    Google Scholar 

  • Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, Van Der Lelie D (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 23:175–207

    PubMed  CAS  Google Scholar 

  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11:251–267

    CAS  Google Scholar 

  • McFarlane JC, Nolt C, Wickliff C, Pfleeger T, Shimabuku R, McDowell M (1987) The uptake, distribution and metabolism of four organic chemicals by soybean plants and barley roots. Environ Toxicol Chem 6:847–856

    CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    PubMed  CAS  Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavymetals. Biotechnol Adv 29:645–653

    PubMed  CAS  Google Scholar 

  • Moorehead DL, Westerfield MM, Zak JC (1998) Plants retard litter decay in a nutrient-limited soil: a case of exploitative competition. Oecologia 113:530–536

    Google Scholar 

  • Muhlbachova G (2009) Microbial biomass dynamics after addition of EDTA into heavy metal contaminated soils. Plant Soil Environ 55:544–550

    CAS  Google Scholar 

  • Nakamura S-i, Akiyama C, Sasaki T, Hattori H, Chino M (2008) Effectof cadmium on the chemical composition of xylem exudates from oilseed rape plants (Brassica napus L.). Soil Sci Plant Nutr 54:118–127

    CAS  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    PubMed  CAS  Google Scholar 

  • Newman LA, Strand SE, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff BB, Wilmoth J, Heilman P, Gordon MP (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol 31:1062–1067

    CAS  Google Scholar 

  • Nriagu JO (1979) Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279:409–411

    PubMed  CAS  Google Scholar 

  • Olson PE, Reardon KF, Pilon-Smits EAH (2003) Ecology of rhizosphere bioremediation. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, New York

    Google Scholar 

  • Peer WA, Baxter IR, Richards EL, Freeman JL, Murphy AS (2005) Phytoremediation and hyper accumulator plants. In: Tamas M, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification, topics in current genetics, vol 14. Springer, Berlin, pp 299–340

    Google Scholar 

  • Pillay VK, Nowak J (1997) Inoculum density, temperature and genotype effects on epiphytic and endophytic colonization and in vitro growth promotion of tomato (Lycopersicon esculentum L.) by a pseudomonad bacterium. Can J Microbiol 43:354–361

    CAS  Google Scholar 

  • Pilon-Smits EAH (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Freeman JL (2006) Environmental cleanup using plants: biotechnological advances and ecological considerations. Front Ecol Environ 4:203–210

    Google Scholar 

  • Pilon-Smits EAH, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20:207–212

    PubMed  CAS  Google Scholar 

  • Pulford ID, Watson C (2008) Phytoremediation of heavy metal-contaminated land by trees a review. Environ Int 29:529–540

    Google Scholar 

  • Rajkumar M, Perumal P, Ashok Prabu V, Vengadesh Perumal N, Thillai Rajasekar K (2009) Phytoplankton diversity in pichavaram mangrove waters from south-east coast of India. J Environ Biol 30:489–498

    PubMed  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    PubMed  CAS  Google Scholar 

  • Reichenauer TG, Germida JJ (2008) Phytoremediation of organic contaminants. Chem Sustain Chem 1:708–717

    CAS  Google Scholar 

  • Roper JC, Dec J, Bollag J (1996) Using minced horseradish roots for the treatment of polluted waters. J Environ Qual 25:1242–1247

    CAS  Google Scholar 

  • Rosselli W, Keller C, Boschi K (2003) Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil 256:265–272

    CAS  Google Scholar 

  • Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phytoremediation of organo mercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344–1352

    PubMed  CAS  Google Scholar 

  • Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, van der Lelie D, Dow JM (2009) The versatility and adaptation of bacteria from the genus stenotrophomonas. Nat Rev Microbiol 7:514–525

    PubMed  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    PubMed  CAS  Google Scholar 

  • Sandermann HJ (1994) Higher plant metabolism of xenobiotics: the “green liver” concept. Pharmacogenetics 4:225–241

    PubMed  CAS  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323

    Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 1–13

    Google Scholar 

  • Sheng M, Tang M, Chen H, Yang BW, Zhang FF, Huang YH (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7):287–296

    PubMed  CAS  Google Scholar 

  • Siciliano SD, Germida JJ (1998a) Bacterial inoculants of forage grasses enhance degradation of 2-chlorobenzoic acid in soil. Environ Toxicol Chem 16:1098–1104

    Google Scholar 

  • Siciliano SD, Germida JJ (1998b) Mechanisms of phytoremediation:biochemical and ecological interactions between plants and bacteria. Environ Rev 6:65–79

    CAS  Google Scholar 

  • Singer CA, Smith D, Jury WA, Hathuc K, Crowley DE (2003) Impact of the plant rhizosphere and augmentation on remediation of polychlorinated biphenyl contaminated soil. Environ Toxicol Chem 22:1998–2004

    PubMed  CAS  Google Scholar 

  • Singh M, Singh N, Bhandari DK (1980) Interaction of selenium and sulfur on the growth and chemical composition of Raya. Soil Sci 129:238–244

    CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego

    Google Scholar 

  • Subramanian M, Oliver DJ, Jacqueline VS (2006) TNT phyto transformation pathway characteristics in Arabidopsis: role of aromatic hydroxylamines. Biotechnol Progr 22:208–216

    CAS  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505

    PubMed  CAS  Google Scholar 

  • Terry N, Carlson C, Raab TK, Zayed AM (1992) Rates of selenium volatilization among crop species. J Environ Qual 21:341–344

    CAS  Google Scholar 

  • Topp E, Scheunert I, Korte F (1989) Kinetics of the uptake of 14C-labeled chlorinated benzenes from soil by plants. Ecotoxicol Environ Saf 17:157–166

    PubMed  CAS  Google Scholar 

  • Toro SD, Zanaroli G, Fava F (2006) Aerobic bioremediation of an actual site soil historically contaminated by polychlorinated biphenyls (PCBs) through bio-augmentation with a non acclimated, complex source of microorganisms. Microb Cell Fact 5:11

    PubMed  Google Scholar 

  • Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G, Berta G (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the as hyper accumulating fern Pteris vittata L. Chemosphere 65:74–81

    PubMed  CAS  Google Scholar 

  • Tsao DT (2003) Phytoremediation. Advances in biochemical engineering biotechnology 78.737. Springer, Berlin, p 206

    Google Scholar 

  • Turgut C, Katie Pepe M, Cutright TJ (2004) The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Pollut 131:147–154

    PubMed  CAS  Google Scholar 

  • Ultra VU, Yano A, Iwasaki K, Tanaka S, Kang YM, Sakurai K (2005) Influence of chelating agent addition on copper distribution and microbial activity in soil and copper uptake by brown mustard (Brassica juncea). Soil Sci Plant Nutr 51:193–202

    CAS  Google Scholar 

  • Van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phyto symbiotic Methylobacterium sp associated with poplar tissues (Populus deltoides x nigra DN34). Appl Environ Microbiol 70:508–517

    PubMed  Google Scholar 

  • Van Hoewyk D, Takahashi H, Hess A, Tamaoki M, Pilon-Smits EAH (2008) Transcriptome and biochemical analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253

    PubMed  Google Scholar 

  • van Overbeek L, van Elsas JD (2008) Effect of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64:283–296

    PubMed  Google Scholar 

  • Wand H, Kuschk P, Soltmann U, Stottmeister U (2002) Enhanced removal of xenobiotics by helophytes. Acta Biotechnol 22(1–2):175–181

    CAS  Google Scholar 

  • Wang Q, Xiong D, Zha P, Yu X, Tu B, Wang G (2011) Effect of applying an arsenic-resistant and plant growth promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. J Appl Microbiol 111:1065–1074

    PubMed  CAS  Google Scholar 

  • Watanabe ME (1997) Phytoremediation on the brink of commercialization. Environ Sci Technol 31:182–186

    Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Plant Biol 20:248–254

    CAS  Google Scholar 

  • Whitfield L, Richards AJ, Rimmer DL (2004) Effects of mycorrhizal colonization on thymus polytrichus from heavy-metal-contaminated sites in northern England. Mycorrhiza 14:47–54

    PubMed  CAS  Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    PubMed  CAS  Google Scholar 

  • Wu FY, Ye ZH, Wu SC, Wong MH (2007) Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta 226:1363–1378

    PubMed  CAS  Google Scholar 

  • Wu Q, Wang S, Thangavel P, Li Q, Zheng H, Bai J, Qiu R (2011) Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. Int J Phytoremediation 13:788–804

    PubMed  Google Scholar 

  • Yang Q, Tu S, Wang G, Liao X, Yan X (2012) Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. Int J Phytoremediation 14:89–99

    PubMed  Google Scholar 

  • Zayed A, Lytle M, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–292

    CAS  Google Scholar 

  • Zeng-Yei Hseu, Su Shaw-Wei, Hung-Yu Lal, Horng-Yuh Guo, Ting-Chien Chen, Zueng-Sang Chen (2010) Remediation techniques and heavy metal uptake by different rice varieties in metal-contaminated soils of Taiwan: new aspects for food safety regulation and sustainable agriculture. Soil Sci Plant Nutr 56:31–52

    Google Scholar 

  • Zhang Y, Moore JN (1997) Environmental conditions controlling selenium volatilization from a wetland system. Environ Sci Technol 31:511–517

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kambaska Kumar Behera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Behera, K.K. (2014). Phytoremediation, Transgenic Plants and Microbes. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-00915-5_4

Download citation

Publish with us

Policies and ethics