Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 573 Accesses

Abstract

Tree-level superamplitudes and the integrands of loop corrections are invariant under the Yangian of the superconformal symmetry \({\mathcal {Y}}({\mathfrak {psu}}(2,2|4)\), which is represented in momentum twistor space by the generators [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the non-Abelian theory, framing regularization does not simply reduce to a cross-correlator.

References

  1. J.M. Drummond, J.M. Henn, J. Plefka, Yangian symmetry of scattering amplitudes in N \(=\) 4 super Yang-Mills theory. JHEP 0905, 046 (2009), [arXiv:0902.2987]

    Google Scholar 

  2. J. Drummond, L. Ferro, Yangians, Grassmannians and T-duality. JHEP 1007, 027 (2010), [arXiv:1001.3348]

    Google Scholar 

  3. R. Akhoury, Mass divergences of wide angle scattering amplitudes. Phys. Rev. D19, 1250 (1979)

    ADS  Google Scholar 

  4. A.H. Mueller, On the asymptotic behavior of the sudakov form-factor. Phys. Rev. D20, 2037 (1979)

    MathSciNet  ADS  Google Scholar 

  5. J.C. Collins, Algorithm to compute corrections to the Sudakov form-factor. Phys. Rev. D22, 1478 (1980)

    ADS  Google Scholar 

  6. A. Sen, Asymptotic behavior of the Sudakov form-factor in QCD. Phys. Rev. D24, 3281 (1981)

    ADS  Google Scholar 

  7. G.F. Sterman, Summation of large corrections to short distance Hadronic cross-sections. Nucl. Phys. B281, 310 (1987)

    Article  ADS  Google Scholar 

  8. J. Botts, G.F. Sterman, Hard elastic scattering in QCD: leading behavior. Nucl. Phys. B325, 62 (1989)

    Article  ADS  Google Scholar 

  9. S. Catani, L. Trentadue, Resummation of the QCD perturbative series for hard processes. Nucl. Phys. B327, 323 (1989)

    Article  ADS  Google Scholar 

  10. G. Korchemsky, Sudakov form-factor in QCD. Phys. Lett. B220, 629 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  11. G. Korchemsky, Double logarithmic asymptotics in QCD. Phys. Lett. B217, 330–334 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  12. L. Magnea, G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD. Phys. Rev. D42, 4222–4227 (1990)

    ADS  Google Scholar 

  13. G. Korchemsky, G. Marchesini, Resummation of large infrared corrections using Wilson loops. Phys. Lett. B313, 433–440 (1993)

    Article  ADS  Google Scholar 

  14. S. Catani, The singular behavior of QCD amplitudes at two loop order. Phys. Lett. B427, 161–171 (1998), [hep-ph/9802439]

    Google Scholar 

  15. G.F. Sterman, M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation. Phys. Lett. B552, 48–56 (2003), [hep-ph/0210130]

    Google Scholar 

  16. G. Korchemsky, J. Drummond, E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops. Nucl. Phys. B795, 385–408 (2008), [arXiv:0707.0243]

    Google Scholar 

  17. J. Drummond, J. Henn, G. Korchemsky, E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes. Nucl. Phys. B826, 337–364 (2010), [arXiv:0712.1223]

    Google Scholar 

  18. I. Korchemskaya, G. Korchemsky, On lightlike Wilson loops. Phys. Lett. B287, 169–175 (1992)

    Article  ADS  Google Scholar 

  19. A. Bassetto, I. Korchemskaya, G. Korchemsky, G. Nardelli, Gauge invariance and anomalous dimensions of a light cone Wilson loop in lightlike axial gauge. Nucl. Phys. B408, 62–90 (1993), [hep-ph/9303314]

    Google Scholar 

  20. S. Ivanov, G. Korchemsky, A. Radyushkin, Infrared asymptotics of perturbative QCD: contour gauges. Yad. Fiz. 44, 230–240 (1986)

    Google Scholar 

  21. G. Korchemsky, G. Marchesini, Structure function for large X and renormalization of Wilson loop. Nucl. Phys. B406, 225–258 (1993), [hep-ph/9210281]

    Google Scholar 

  22. Z. Bern, L.J. Dixon, V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond. Phys. Rev. D72, 085001 (2005), [hep-th/0505205]

    Google Scholar 

  23. L.F. Alday, R. Roiban, Scattering amplitudes, Wilson loops and the String/Gauge theory correspondence. Phys. Rep. 468, 153–211 (2008), [arXiv:0807.1889]

    Google Scholar 

  24. G. Korchemsky, E. Sokatchev, Symmetries and analytic properties of scattering amplitudes in N \(=\) 4 SYM theory. Nucl. Phys. B832, 1–51 (2010), [arXiv:0906.1737]

    Google Scholar 

  25. A. Sever, P. Vieira, Symmetries of the N = 4 SYM S-matrix, arXiv:0908.2437

    Google Scholar 

  26. S. Caron-Huot, S. He, Jumpstarting the all-loop S-matrix of planar N \(=\) 4 super Yang-Mills. JHEP 1207, 174 (2012), [arXiv:1112.1060]

    Google Scholar 

  27. M. Bullimore, D. Skinner, Descent Equations for Superamplitudes, arXiv:1112.1056

    Google Scholar 

  28. M. Bullimore, D. Skinner, Holomorphic Linking, Loop Equations and Scattering Amplitudes in Twistor Space, arXiv:1101.1329

    Google Scholar 

  29. D. Gaiotto, J. Maldacena, A. Sever, P. Vieira, Pulling the straps of polygons. JHEP 1112, 011 (2011), [arXiv:1102.0062]

    Google Scholar 

  30. S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N \(=\) 4 super Yang-Mills, arXiv:1105.5606 (Temporary entry)

    Google Scholar 

  31. A. Brandhuber, P. Heslop, G. Travaglini, MHV amplitudes in N \(=\) 4 super Yang-Mills and Wilson loops. Nucl. Phys. B794, 231–243 (2008), [arXiv:0707.1153]

    Google Scholar 

  32. L. Mason, D. Skinner, The complete planar S-matrix of N \(= \)4 SYM as a Wilson loop in Twistor space. JHEP 1012, 018 (2010), [arXiv:1009.2225]

    Google Scholar 

  33. R. Boels, L. Mason, D. Skinner, Supersymmetric gauge theories in Twistor space. JHEP 0702, 014 (2007), [hep-th/0604040]

    Google Scholar 

  34. N. Woodhouse, Real methods in Twistor theory. Class. Quant. Grav. 2, 257–291 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever, P. Vieira, An operator product expansion for polygonal null Wilson loops. JHEP 1104, 088 (2011), [arXiv:1006.2788]

    Google Scholar 

  36. N. Beisert, B. Eden, M. Staudacher, Transcendentality and crossing. J. Stat. Mech. 0701, P01021 (2007), [hep-th/0610251]

    Google Scholar 

  37. L.F. Alday, J. Maldacena, Minimal Surfaces in AdS and the Eight-Gluon Scattering Amplitude at Strong Coupling, arXiv:0903.4707

    Google Scholar 

  38. L.F. Alday, D. Gaiotto, J. Maldacena, Thermodynamic bubble Ansatz. JHEP 1109, 032 (2011), [arXiv:0911.4708]

    Google Scholar 

  39. L.F. Alday, J. Maldacena, A. Sever, P. Vieira, Y-system for scattering amplitudes. J. Phys. A A43, 485401 (2010), [arXiv:1002.2459]

    Google Scholar 

  40. A. Belitsky, G. Korchemsky, E. Sokatchev, Are scattering amplitudes dual to super Wilson loops? Nucl. Phys. B855, 333–360 (2012), [arXiv:1103.3008]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew Richard Bullimore .

Appendix: Component Expansions

Appendix: Component Expansions

The superconnection \({\mathbb {A}}\) on chiral superspace is determined by the superspace constraints and supergauge condition \(\theta ^{\alpha a}{\mathcal {A}}_{\alpha a }=0\). Up to order fourth order in the fermions, the constraints are solved by the following expansion

$$\begin{aligned} {\mathcal {A}}&= A + \mathrm{i}|\theta ^a\rangle [\bar{\psi }_a| + \frac{\mathrm{i}}{2}|\theta ^a\rangle \langle \theta ^b|D\phi _{ab} -\frac{1}{3!}\varepsilon _{abcd}|\theta ^a\rangle \langle \theta ^b|\,D\langle \theta ^c\psi ^d\rangle \nonumber \\&\quad +\frac{\mathrm{i}}{4!}\varepsilon _{abcd}|\theta ^a\rangle \langle \theta ^b|\,D\langle \theta ^c|G|\theta ^d\rangle + \cdots \\ |{\mathcal {A}}_a\rangle&= \frac{\mathrm{i}}{2}\phi _{ab}|\theta ^b\rangle -\frac{1}{3}\varepsilon _{abcd}|\theta ^b\rangle \langle \theta ^c\psi ^d\rangle +\frac{\mathrm{i}}{8}\varepsilon _{abcd}|\theta ^b\rangle \langle \theta ^c|G|\theta ^d\rangle +\cdots \ .\nonumber \end{aligned}$$
(6.90)

The corresponding supercurvatures have component expansions up to second order in the fermions as follows

$$\begin{aligned} {\mathcal {F}}_{\dot{\alpha }\dot{\beta }}^+(x,\theta )&= F_{\dot{\alpha }\dot{\beta }}^{+} +\mathrm{i}\langle \theta ^a|D_{(\dot{\alpha }}\bar{\psi }_{\dot{\beta })a} +\frac{\mathrm{i}}{2}\langle \theta ^a|D_{(\dot{\alpha }}\langle \theta ^b|D_{\dot{\beta })}\phi _{ab} -\frac{\mathrm{i}}{2}\langle \theta ^a\theta ^b\rangle \left\{ \bar{\psi }_{a(\dot{\alpha }},\bar{\psi }_{\dot{\beta })b}\right\} +\cdots \nonumber \\ {\mathcal {F}}_{\alpha \beta }^-(x,\theta )&= F_{\alpha \beta }^{-} + \mathrm{i}\theta ^a_{(\alpha }D_{\beta )\dot{\beta }}\bar{\psi }_a^{\dot{\beta }} +\mathrm{i}\theta ^{\ a}_{(\alpha }\theta ^{\ b}_{\beta )} \left( \Box \phi _{ab} - \left\{ \bar{\psi }^{\dot{\alpha }}_{\ a},\bar{\psi }_{\dot{\alpha }b}\right\} \right) +\frac{1}{4}\theta ^{\gamma b}\theta ^a_{(\alpha }F^-_{\beta )\gamma }\phi _{ab}+\cdots \nonumber \\ {\mathcal {F}}_{\dot{\alpha }a}(x,\theta )&= \bar{\psi }_{\dot{\alpha }a}+\theta ^{\alpha b}D_{\alpha \dot{\alpha }}\phi _{ab} + \frac{\mathrm{i}\varepsilon _{abcd}}{3!}\theta ^{\alpha b}D_{\alpha \dot{\alpha }}\langle \theta ^c\psi ^d\rangle +\cdots \nonumber \\ {\mathcal {W}}_{ab}(x,\theta )&= \phi _{ab}+\mathrm{i}\varepsilon _{abcd}\langle \theta ^c\psi ^d\rangle +\frac{1}{2}\varepsilon _{abcd}\langle \theta ^c|G|\theta ^d\rangle + \frac{1}{4}\left[ \phi _{ac},\phi _{bd}\right] \langle \theta ^c\theta ^d\rangle + \cdots \, . \end{aligned}$$
(6.91)

See Refs. [32, 40] for further information.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bullimore, M.R. (2014). Anomalies. In: Scattering Amplitudes and Wilson Loops in Twistor Space. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-00909-4_6

Download citation

Publish with us

Policies and ethics