Advertisement

Anomalies

  • Mathew Richard BullimoreEmail author
Chapter
  • 432 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Tree-level superamplitudes and the integrands of loop corrections are invariant under the Yangian of the superconformal symmetry \({\mathcal {Y}}({\mathfrak {psu}}(2,2|4)\), which is represented in momentum twistor space by the generators [1, 2].

Keywords

Momentum Twistor Tree-level Superamplitudes Super Gauge Transformations Dual Conformal Symmetry Remainder Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.M. Drummond, J.M. Henn, J. Plefka, Yangian symmetry of scattering amplitudes in N \(=\) 4 super Yang-Mills theory. JHEP 0905, 046 (2009), [arXiv:0902.2987]Google Scholar
  2. 2.
    J. Drummond, L. Ferro, Yangians, Grassmannians and T-duality. JHEP 1007, 027 (2010), [arXiv:1001.3348]Google Scholar
  3. 3.
    R. Akhoury, Mass divergences of wide angle scattering amplitudes. Phys. Rev. D19, 1250 (1979)ADSGoogle Scholar
  4. 4.
    A.H. Mueller, On the asymptotic behavior of the sudakov form-factor. Phys. Rev. D20, 2037 (1979)MathSciNetADSGoogle Scholar
  5. 5.
    J.C. Collins, Algorithm to compute corrections to the Sudakov form-factor. Phys. Rev. D22, 1478 (1980)ADSGoogle Scholar
  6. 6.
    A. Sen, Asymptotic behavior of the Sudakov form-factor in QCD. Phys. Rev. D24, 3281 (1981)ADSGoogle Scholar
  7. 7.
    G.F. Sterman, Summation of large corrections to short distance Hadronic cross-sections. Nucl. Phys. B281, 310 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    J. Botts, G.F. Sterman, Hard elastic scattering in QCD: leading behavior. Nucl. Phys. B325, 62 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    S. Catani, L. Trentadue, Resummation of the QCD perturbative series for hard processes. Nucl. Phys. B327, 323 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    G. Korchemsky, Sudakov form-factor in QCD. Phys. Lett. B220, 629 (1989)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    G. Korchemsky, Double logarithmic asymptotics in QCD. Phys. Lett. B217, 330–334 (1989)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    L. Magnea, G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD. Phys. Rev. D42, 4222–4227 (1990)ADSGoogle Scholar
  13. 13.
    G. Korchemsky, G. Marchesini, Resummation of large infrared corrections using Wilson loops. Phys. Lett. B313, 433–440 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    S. Catani, The singular behavior of QCD amplitudes at two loop order. Phys. Lett. B427, 161–171 (1998), [hep-ph/9802439]Google Scholar
  15. 15.
    G.F. Sterman, M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation. Phys. Lett. B552, 48–56 (2003), [hep-ph/0210130]Google Scholar
  16. 16.
    G. Korchemsky, J. Drummond, E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops. Nucl. Phys. B795, 385–408 (2008), [arXiv:0707.0243]Google Scholar
  17. 17.
    J. Drummond, J. Henn, G. Korchemsky, E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes. Nucl. Phys. B826, 337–364 (2010), [arXiv:0712.1223]Google Scholar
  18. 18.
    I. Korchemskaya, G. Korchemsky, On lightlike Wilson loops. Phys. Lett. B287, 169–175 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    A. Bassetto, I. Korchemskaya, G. Korchemsky, G. Nardelli, Gauge invariance and anomalous dimensions of a light cone Wilson loop in lightlike axial gauge. Nucl. Phys. B408, 62–90 (1993), [hep-ph/9303314]Google Scholar
  20. 20.
    S. Ivanov, G. Korchemsky, A. Radyushkin, Infrared asymptotics of perturbative QCD: contour gauges. Yad. Fiz. 44, 230–240 (1986)Google Scholar
  21. 21.
    G. Korchemsky, G. Marchesini, Structure function for large X and renormalization of Wilson loop. Nucl. Phys. B406, 225–258 (1993), [hep-ph/9210281]Google Scholar
  22. 22.
    Z. Bern, L.J. Dixon, V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond. Phys. Rev. D72, 085001 (2005), [hep-th/0505205]Google Scholar
  23. 23.
    L.F. Alday, R. Roiban, Scattering amplitudes, Wilson loops and the String/Gauge theory correspondence. Phys. Rep. 468, 153–211 (2008), [arXiv:0807.1889]Google Scholar
  24. 24.
    G. Korchemsky, E. Sokatchev, Symmetries and analytic properties of scattering amplitudes in N \(=\) 4 SYM theory. Nucl. Phys. B832, 1–51 (2010), [arXiv:0906.1737]Google Scholar
  25. 25.
    A. Sever, P. Vieira, Symmetries of the N = 4 SYM S-matrix, arXiv:0908.2437Google Scholar
  26. 26.
    S. Caron-Huot, S. He, Jumpstarting the all-loop S-matrix of planar N \(=\) 4 super Yang-Mills. JHEP 1207, 174 (2012), [arXiv:1112.1060]Google Scholar
  27. 27.
    M. Bullimore, D. Skinner, Descent Equations for Superamplitudes, arXiv:1112.1056Google Scholar
  28. 28.
    M. Bullimore, D. Skinner, Holomorphic Linking, Loop Equations and Scattering Amplitudes in Twistor Space, arXiv:1101.1329Google Scholar
  29. 29.
    D. Gaiotto, J. Maldacena, A. Sever, P. Vieira, Pulling the straps of polygons. JHEP 1112, 011 (2011), [arXiv:1102.0062]Google Scholar
  30. 30.
    S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N \(=\) 4 super Yang-Mills, arXiv:1105.5606 (Temporary entry)Google Scholar
  31. 31.
    A. Brandhuber, P. Heslop, G. Travaglini, MHV amplitudes in N \(=\) 4 super Yang-Mills and Wilson loops. Nucl. Phys. B794, 231–243 (2008), [arXiv:0707.1153]Google Scholar
  32. 32.
    L. Mason, D. Skinner, The complete planar S-matrix of N \(= \)4 SYM as a Wilson loop in Twistor space. JHEP 1012, 018 (2010), [arXiv:1009.2225]Google Scholar
  33. 33.
    R. Boels, L. Mason, D. Skinner, Supersymmetric gauge theories in Twistor space. JHEP 0702, 014 (2007), [hep-th/0604040]Google Scholar
  34. 34.
    N. Woodhouse, Real methods in Twistor theory. Class. Quant. Grav. 2, 257–291 (1985)MathSciNetADSCrossRefzbMATHGoogle Scholar
  35. 35.
    L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever, P. Vieira, An operator product expansion for polygonal null Wilson loops. JHEP 1104, 088 (2011), [arXiv:1006.2788]Google Scholar
  36. 36.
    N. Beisert, B. Eden, M. Staudacher, Transcendentality and crossing. J. Stat. Mech. 0701, P01021 (2007), [hep-th/0610251]Google Scholar
  37. 37.
    L.F. Alday, J. Maldacena, Minimal Surfaces in AdS and the Eight-Gluon Scattering Amplitude at Strong Coupling, arXiv:0903.4707Google Scholar
  38. 38.
    L.F. Alday, D. Gaiotto, J. Maldacena, Thermodynamic bubble Ansatz. JHEP 1109, 032 (2011), [arXiv:0911.4708]Google Scholar
  39. 39.
    L.F. Alday, J. Maldacena, A. Sever, P. Vieira, Y-system for scattering amplitudes. J. Phys. A A43, 485401 (2010), [arXiv:1002.2459]Google Scholar
  40. 40.
    A. Belitsky, G. Korchemsky, E. Sokatchev, Are scattering amplitudes dual to super Wilson loops? Nucl. Phys. B855, 333–360 (2012), [arXiv:1103.3008]Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Mathematical InstituteRadcliffe Observatory QuarterOxfordUK

Personalised recommendations