Glacier Retreat, Lakes Development and Associated Natural Hazards in Cordilera Blanca, Peru

  • Adam Emmer
  • Vít Vilímek
  • Jan Klimeš
  • Alejo Cochachin
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Cordillera Blanca is the heaviest glacierized tropical range in the world. Due to the global climate change, most of glaciers are retreating and thinning. Glacier retreat leads to the formation and development of all types of potentially hazardous glacial lakes (bedrock-dammed, moraine-dammed, and ice-dammed). Potential hazardousness of glacial lakes is strongly interconnected with dynamic slope movements: (1) sudden release of water from glacial lakes (also known as glacial lake outburst floods—GLOF) is mainly caused by dynamic slope movement into the lake (about 80 % in the Cordillera Blanca); (2) released water may easily transform into debris-flow or mud-flow, thanks to its high erosion and transport potential. Based on field study and remotely sensed images, this contribution documents glacier retreat in the Cordillera Blanca with regards to formation and development of new potentially hazardous glacial lakes, which evolve mainly in elevations of about 4,600–5,000 m a.s.l. We introduce and describe three hazardous events associated with glacier retreat in the last decade: (a) sudden release of water from moraine-dammed Lake Palcacocha in 2003; (b) sudden release of water from bedrock-dammed lake No. 513 in 2010; and (c) sudden release of water from bedrock-dammed Lake Artizon Alto and subsequent moraine dam failure of downstream situated Lake Artizon Bajo in 2012. The first and third events were caused by landslides of lateral moraines (which are often non-consolidated and nearly vertical) into the lakes. The second event was caused by ice- and rockfall into the lake. These events illustrate that various natural hazards (dynamic slope movements, floods) associated with glacier retreat in the Cordillera Blanca are closely linked and represent actual threats to urbanization and safety of lives and property.

Keywords

Natural hazards Glacier retreat Dynamic slope movements GLOFs The Cordillera Blanca 

References

  1. Ames AM, Francou B (1995) Cordillera Blanca—glaciares en la historia. Bulletin de l’Institut Français d’Études Andines 24(1):37–64Google Scholar
  2. Carey M (2005) Living and dying with glaciers: people’s historical vulnerability to avalanches and outburst floods in Peru. Global Planet Change 47(2–4):122–134CrossRefGoogle Scholar
  3. Clague JJ, Evans SG (2000) A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quaternary Science Reviews, 19:1763-1783Google Scholar
  4. Clague JJ, Huggel C, Korup O, McGuire B (2012) Climate change and hazardous processes in high mountains. Revista de la Asociación Geológica Argentina 69(3):328–338Google Scholar
  5. Concha JF (1951) Origen de las Lagunas. Corporación Peruana del Santa, División de Geología y Seguridad de Lagunas, Huaraz (Peru), p 4Google Scholar
  6. Costa JE, Schuster RL (1988) The formation and failure of natural dams. Geol Soc Am Bull 100:1054–1068CrossRefGoogle Scholar
  7. Emmer A, Cochachin A (2013) Causese and mechanisms of moraine-dammed lake failures in the Cordillera Blanca, North American Cordillera and Himalaya. AUC Geographica 48(2) (in press)Google Scholar
  8. Emmer A, Vilímek V (2013) Review article: Lake and breach hazard assessment for moraine-dammed lakes: an example from Cordillera Blanca (Peru). Natural Hazards and Earth System Science, 13:1551–1565. doi:10.5194/nhess-13-1551-2013
  9. Evans SG, Clague JJ (1994) Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology 10:107–128CrossRefGoogle Scholar
  10. Georges C (2004) The 20th century glacier fluctuations in the tropical Cordillera Blanca, Peru. Arct Antarct Alp Res 36:100–107CrossRefGoogle Scholar
  11. Harrison S, Glasser N, Winchester V, Haresign E, Warren C, Jansson KA (2006) Glacial lake outburst flood associated with recent mountain glacier retreat, Patagonian Andes. Holocene 16(4):611–620CrossRefGoogle Scholar
  12. Hegglin E, Huggel C (2008) An integrated assessment of vulnerability to glacial hazards—a case study in the Cordillera Blanca, Peru. Mt Res Dev 28:299–309CrossRefGoogle Scholar
  13. Holm C, Bovis M, Jacob M (2004) The landslide response of alpine basins to post-little Ice Age glacial thinning and retreat in southwestern British Columbia. Geomorphology 57:201–216CrossRefGoogle Scholar
  14. Huaman AC (2001) Estudio de vulnerabilidad y seguridad física de la laguna Artizon Bajo. Instituto National de Recursos naturales (INRENA), Unidad de Glaciologia y Recursos Hidricos, Huaráz, p 46Google Scholar
  15. Huggel C, Haeberli W, Kääb A, Bieri D, Richardson S (2004) An assessment procedure for glacial hazards in the Swiss Alps. Can Geotech J 41:1068–1083CrossRefGoogle Scholar
  16. Hutchinson EG (1957) A Treatise on Limnology, vol 1, geography, physics and chemistry. Wiley, New York, p 1015Google Scholar
  17. Janský B, Šobr M, Yerokhin S (2006) Typology of high mountain lakes of Kyrgyzstan with regard to the risk of their rupture. Limnol Rev 6:135–140Google Scholar
  18. Kalff J (2002) Limnology, inland water ecosystem. Prentice-Hall, Inc., New Jersey 592Google Scholar
  19. Kaser G (1995) Some notes on behaviour of the tropical glaciers. Bull. Inst. fr. Études andines, 24:671–681Google Scholar
  20. Klimeš J (2012) Geomorphology and natural hazards of the selected glacial valleys, Cordillera Blanca, Peru. AUC Geogr 47(2):25–31Google Scholar
  21. Klimeš J, Vilímek V, Omelka M (2009) Implications of geomorphological research for recent and prehistoric avalanches and related hazards at Huascaran, Peru. Nat Hazards 50(1):193–209CrossRefGoogle Scholar
  22. Korup O, Tweed F (2007) Ice, moraine and landslide dams in mountainous terrain. Quatern Sci Rev 26:3406–3422CrossRefGoogle Scholar
  23. Lliboutry L, Morales BA, Pautre A, Schneider B (1977) Glaciological problems set by the control of dangerous lakes in Cordillera Blanca, Peru. I. Historical failures of moranic dams, their causes and prevention. J Glaciol 18:239–254Google Scholar
  24. Mark BG (2002) Observations of modern deglaciation and hydrology in the Cordillera Blanca. Acta Montana, ser. A Geodyn 19(123):23–36Google Scholar
  25. Morales BA, Zamora MC, Ames AM (1979) Inventario de lagunas y glaciares del Perú. In: Boletín de la Sociedad Geológica del Perú, Parte III, Lima, pp 63–82Google Scholar
  26. Oerlemans J, Knap WH (1998) A 1 year record of global radiation and albedoin the ablation zone of Morteratschgletscher, Switzerland. J Glaciol 44(147):213–238Google Scholar
  27. O’Connor JE, Costa JE (1993) Geologic and hydrologic hazards in Glacierized basins in North America resulting from 19th and 20th century global warming. Nat Hazards 8:121–140CrossRefGoogle Scholar
  28. Oppenheim V (1946) Sobre las lagunas de Huaráz. In: Boletin de la sociedad geologica del Peru, Sociedad geologica del Peru, Lima, pp 68–80Google Scholar
  29. Portocarrero CR (1995) Proyecto prioritario del afianzamiento hídrico del rio Santa. Hidrandina S.A., Huaraz (Peru), p 28 Google Scholar
  30. Reynolds JM (2003) Development of glacial hazard and risk minimisation protocols in rural environments. Methods of glacial hazard assessment and management in the Cordillera Blanca, Peru. Reynolds Geo-Sciences Ltd., Flintshire, p 72Google Scholar
  31. Richardson SD, Reynolds JM (2000a) An overview of glacial hazards in the Himalayas. Quat Int 65(66):31–47CrossRefGoogle Scholar
  32. Richardson SD Reynolds JM (2000b) Degradation of ice-cored moraine dams: implications for hazard development. In: Debris-Covered Glaciers, Proceedings of a workshop held at Seattle, Washington, USA, September 2000, The Netherlands, pp 187–197Google Scholar
  33. Richardson SD (2010) Remote sensing approaches for early warning of GLOF hazard in the Hindu Kush—Himalayan region. Uniten Nations International Strategy for Disaster Reduction (UN/ISDR), 35 ppGoogle Scholar
  34. Shrestha AB (2010) Managing flash flood risk in the Himalayas; informational sheet #1/10. International Centre for Integrated Mountain Development (ICIMOD), Kathmandu (Nepal), p 4Google Scholar
  35. Solomina O, Jomelli V, Kaser G, Ames A, Berger B, Pouyaud B (2007) Lichenometry in the Cordillera Blanca, Peru: “Little Ice Age” moraine chronology. Glob Planet Change 59:225–235Google Scholar
  36. Thompson L, Mosley-Thompson E, Henderson K (2000) Ice-core paleoclimate records in tropical South America since the las glacial maximum. J Quat Sci 15:377–394CrossRefGoogle Scholar
  37. Vilímek V (2002): Paleogeographical evolution of central Andes. Acta Montana, ser. A Geodyn 19(123):7–21Google Scholar
  38. Vilímek V, Zapata ML, Klimeš J, Patzelt Z, Santillán N (2005) Influence of glacial retreat on natural hazards of the Palcacocha Lake area, Peru. Landslides 2:107–115CrossRefGoogle Scholar
  39. Wilson J, Reyes L, Garayar J (1995) Geología de los cuadrángulos de Pallasca, Tayabamba, Corongo, Pomabamba, Carhuaz y Huari. Boletín No. 16—1967 Actualizado por la Dirección de la Carta Geológica Nacional a 1995, Boletín No. 60, Serie A Carta Geológica Nacional, INGEMET, Lima, p 64Google Scholar
  40. Zapata ML (2002) La dinamica glaciar en lagunas de la Cordillera Blanca. Acta Montana 19(123):37–60Google Scholar
  41. Zapata ML, Gómez RJL, Santillán NP, Espinoza HV, Huamaní AH (2003) Evaluacion del estado de los glaciares en la cabecera de la laguna Palcacocha. Informe tecnico, INRENA, INGEMMET, Huaraz, p 23Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Adam Emmer
    • 1
  • Vít Vilímek
    • 1
  • Jan Klimeš
    • 2
  • Alejo Cochachin
    • 3
  1. 1.Department of Physical Geography and Geoecology, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  2. 2.Institute of Rock Structure and MechanicsAcademy of Sciences of the Czech RepublicPrague 8Czech Republic
  3. 3.Unidad de Glaciologia y Recursos HidricosHuarásPeru

Personalised recommendations