Skip to main content

Simultaneous Capacity and Planned Lead Time Optimization

  • Chapter
  • First Online:
Capacity and Inventory Planning for Make-to-Order Production Systems

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 671))

  • 2141 Accesses

Abstract

The literature on simultaneous capacity and inventory investment problems (see Chap. 2) shows that, especially for the MTS case, there are several contributions available, but for the MTO case, there is still a research gap about the influence of capacity investment on optimal planned lead time. A simultaneous approach to capacity and planned lead time setting is presented in this chapter based on costs for capacity, WIP at each stage, FGI, and backorders. This extends existing planned lead time approaches by introducing a distributed customer required lead time rather than applying a single value and a variable production lead time that can be optimized by investments. Furthermore, it extends existing capacity investment approaches by including a distributed customer required lead time and by rationing the work release, and therefore the inventory, with the application of planned lead times. First the simultaneous optimization problem is stated for a general setting before detailed results for a single- and a two-stage production system, assuming M/M/1 queues for the processing steps, are developed. For the two-stage production system consisting of M/M/1 queues and an exponentially distributed customer required lead time it is shown that only very little cost improvement can be gained by including a planned lead time for the upstream processing stage. This extends the findings of Yano (1987), Buzacott and Shanthikumar (1994), and Karaesmen et al. (2004) who analyze an MTO system with a constant customer required lead time. Furthermore, a large cost improvement potential is found when capacity investment and planned lead times are simultaneously optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altendorfer, K., Jodlbauer, H., & Huber, A. (2007a). Behaviour of MRP, Kanban, CONWIP and DBR under dynamic environmental variability. In C. Engelhardt-Nowizki, O. Nowitzky, & B. Krenn (Eds.), Management komplexer Materialflüsse mittels Simulation – State-of-the-Art innovative Konzepte (pp. 113–128). Wiesbaden: Deutscher Universitätsverlag.

    Google Scholar 

  • Buzacott, J. A., & Shanthikumar, J. G. (1994). Safety stock versus safety time in MRP controlled production systems. Management Science, 40(12), 1678–1689.

    Article  Google Scholar 

  • Karaesmen, F., Liberopoulos, G., & Dallery, Y. (2004). The value of advance demand information in production/inventory systems. Annals of Operations Research, 126(1), 135–157.

    Article  Google Scholar 

  • Yano, C. A. (1987). Setting planned leadtimes in serial production systems with tardiness costs. Management Science, 33(1), 95–106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Proof of Proposition 4.3

Based on Eq. (4.18) the following first-order optimality conditions can be stated:

$$ \begin{array}{llll} \frac{{dC\left( {X,\mu } \right)}}{dX }=0\Leftrightarrow {F_W}(X)=\frac{{{c_c}}}{{{c_f}+{c_c}}}\Leftrightarrow {X^{*}}=\frac{1}{{\mu -\lambda }}\ln \left( {\frac{{{c_f}+{c_c}}}{{{c_f}}}} \right) \hfill \\ \frac{{dC\left( {X,\mu } \right)}}{{d\mu }}=0\Leftrightarrow \frac{{{c_{\mu }}}}{\lambda }+\left( {{c_f}+{c_c}} \right)\int\limits_0^X {\tau {e^{{-\left( {\mu -\lambda } \right)\tau }}}\left( {1-{F_L}\left( \tau \right)} \right)d\tau } =\frac{{\left( {{c_y}+{c_c}} \right)}}{{{{{\left( {\mu -\lambda } \right)}}^2}}} \hfill \\ \Leftrightarrow \frac{{{c_{\mu }}}}{\lambda }+\left( {{c_f}+{c_c}} \right)\int\limits_0^X {\tau {e^{{-\left( {\mu -\lambda } \right)\tau }}}{e^{{-\beta \tau }}}} d\tau =\frac{{\left( {{c_y}+{c_c}} \right)}}{{{{{\left( {\mu -\lambda } \right)}}^2}}} \hfill \\ \Leftrightarrow \frac{{{c_{\mu }}}}{\lambda }+\frac{{\left( {{c_f}+{c_c}} \right)}}{{\left( {\mu +\beta -\lambda } \right)}}\left( {\frac{{1-{e^{{-\left( {\mu +\beta -\lambda } \right)X}}}}}{{\left( {\mu +\beta -\lambda } \right)}}-{e^{{-\left( {\mu +\beta -\lambda } \right)X}}}X} \right)=\frac{{\left( {{c_y}+{c_c}} \right)}}{{{{{\left( {\mu -\lambda } \right)}}^2}}} \end{array} $$
(4.32)

The second derivative of the cost function with respect to the processing rate \( \mu \) is positive. Therefore, the cost function is convex and the first-order condition defines a unique minimum:

$$ \begin{array}{llll} \frac{{dC\left( {X,\mu } \right)}}{{{d^2}\mu }}=\frac{{2\lambda \left( {{c_y}+{c_c}} \right)}}{{{{{\left( {\mu -\lambda } \right)}}^3}}} \hfill \\ -\left( {{c_c}+{c_f}} \right)\lambda \frac{{\left( {-2+{e^{{-\left( {\mu -\lambda +\beta } \right)X}}}\left( {2+2X\left( {\mu -\lambda +\beta } \right)+{X^2}{{{\left( {\mu -\lambda +\beta } \right)}}^2}} \right)} \right)}}{{{{{\left( {\mu -\lambda +\beta } \right)}}^3}}}\mathop{>}\limits^{!}0 \hfill \\ \Leftrightarrow \frac{{2\left( {{c_y}+{c_c}} \right)}}{{\left( {{c_c}+{c_f}} \right)}} \hfill \\ -\frac{{{{{\left( {\mu -\lambda } \right)}}^3}}}{{{{{\left( {\mu -\lambda +\beta } \right)}}^3}}}\left( {-2+{e^{{-\left( {\mu -\lambda +\beta } \right)X}}}\left( {2+2X\left( {\mu -\lambda +\beta } \right)+{X^2}{{{\left( {\mu -\lambda +\beta } \right)}}^2}} \right)} \right)\mathop{>}\limits^{!}0 \hfill \\ \mathrm{ with}\ \frac{{2\left( {{c_y}+{c_c}} \right)}}{{\left( {{c_c}+{c_f}} \right)}}>1\ \mathrm{ from}\ {c_c}>{c_f} \hfill \\ \Leftrightarrow \frac{{{{{\left( {\mu -\lambda } \right)}}^3}}}{{{{{\left( {\mu -\lambda +\beta } \right)}}^3}}}\left( {-2+{e^{{-\left( {\mu -\lambda +\beta } \right)X}}}\left( {2+2X\left( {\mu -\lambda +\beta } \right)+{X^2}{{{\left( {\mu -\lambda +\beta } \right)}}^2}} \right)} \right)\mathop{<}\limits^{!}1 \hfill \\ \mathrm{ with}\ \frac{{{{{\left( {\mu -\lambda +\beta } \right)}}^3}}}{{{{{\left( {\mu -\lambda } \right)}}^3}}}>1 \hfill \\ \Leftrightarrow {e^{{-\left( {\mu -\lambda +\beta } \right)X}}}\left( {1+X\left( {\mu -\lambda +\beta } \right)+\frac{1}{2}{X^2}{{{\left( {\mu -\lambda +\beta } \right)}}^2}} \right)\mathop{<}\limits^{!}\frac{3}{2} \hfill \\ \Leftrightarrow {e^{{\left( {\mu -\lambda +\beta } \right)X}}}+\frac{1}{2}{e^{{\left( {\mu -\lambda +\beta } \right)X}}}\mathop{>}\limits^{!}1+X\left( {\mu -\lambda +\beta } \right)+\frac{1}{2}{X^2}{{\left( {\mu -\lambda +\beta } \right)}^2} \end{array} $$
(4.33)

which is fulfilled with:

$$ \begin{array}{llll} {e^a}-1> a\Rightarrow {e^{{\left( {\mu -\lambda +\beta } \right)X}}}>1+X\left( {\mu -\lambda +\beta } \right) \hfill \\ \mathrm{ and}\ {e^a}>{a^2}\Rightarrow {e^{{\left( {\mu -\lambda +\beta } \right)X}}}>{{\left( {X\left( {\mu -\lambda +\beta } \right)} \right)}^2} \end{array} $$
(4.34)

The first derivative of \( {X^{*}} \) with respect to \( \beta \) is obviously negative, so \( {X^{*}} \) increases in mean customer required lead time \( 1/\beta \).

Implicit differentiation of the optimality condition (4.20) leads to:

$$ \begin{array}{lllll} \Phi \left( {{\mu^{*}},{\mu^{*}}\left( \beta \right)} \right)={c_{\mu }}-\frac{{\left( {{c_y}+{c_c}} \right)\lambda }}{{{{{\left( {{\mu^{*}}-\lambda } \right)}}^2}}}+\left( {{c_f}+{c_c}} \right)\lambda \int\limits_0^{{{X^{*}}}} {\tau {e^{{-\left( {{\mu^{*}}-\lambda +\beta } \right)\tau }}}} d\tau =0 \hfill \\ \frac{{d\Phi \left( {{\mu^{*}}\left( \beta \right)} \right)}}{{d{\mu^{*}}\left( \beta \right)}}=\frac{{2\left( {{c_y}+{c_c}} \right)\lambda }}{{{{{\left( {{\mu^{*}}-\lambda } \right)}}^3}}}+\left( {{c_f}+{c_c}} \right)\lambda \frac{{d{X^{*}}}}{{d{\mu^{*}}\left( \beta \right)}}{X^{*}}{e^{{-\left( {{\mu^{*}}-\lambda +\beta } \right){X^{*}}}}} \hfill \\ -\left( {{c_f}+{c_c}} \right)\lambda \int\limits_0^{{{X^{*}}}} {{\tau^2}{e^{{-\left( {{\mu^{*}}-\lambda +\beta } \right)\tau }}}} d\tau \hfill \\ \frac{{d\Phi \left( {{\mu^{*}}\left( \beta \right)} \right)}}{{d\beta }}=-\left( {{c_f}+{c_c}} \right)\lambda \int\limits_0^{{{X^{*}}}} {{\tau^2}{e^{{-\left( {{\mu^{*}}-\lambda +\beta } \right)\tau }}}} d\tau \hfill \\ \mathrm{with}\ \frac{{d\Phi \left( {{\mu^{*}}\left( \beta \right)} \right)}}{{d{\mu^{*}}\left( \beta \right)}}\frac{{d{\mu^{*}}\left( \beta \right)}}{{d\beta }}+\frac{{d\Phi \left( {{\mu^{*}}\left( \beta \right)} \right)}}{{d\beta }}=0 \hfill \\ \Rightarrow \frac{{2\left( {{c_y}+{c_c}} \right)}}{{{{{\left( {{\mu^{*}}-\lambda } \right)}}^3}}}\frac{{d{\mu^{*}}\left( \beta \right)}}{{d\beta }}+\left( {{c_f}+{c_c}} \right)\frac{{d{X^{*}}}}{{d{\mu^{*}}\left( \beta \right)}}{X^{*}}{e^{{-\left( {{\mu^{*}}-\lambda +\beta } \right){X^{*}}}}}\frac{{d{\mu^{*}}\left( \beta \right)}}{{d\beta }} \hfill \\ -\left( {{c_f}+{c_c}} \right)\int\limits_0^{{{X^{*}}}} {{\tau^2}{e^{{-\left( {{\mu^{*}}-\lambda +\beta } \right)\tau }}}} d\tau \left( {1+\frac{{d{\mu^{*}}\left( \beta \right)}}{{d\beta }}} \right)=0 \hfill \\ \end{array} $$
(4.35)
$$ \begin{array}{llll} \ \mathrm{ with}\ \frac{{d{X^{*}}}}{{d{\mu^{*}}\left( \beta \right)}}=\frac{-1 }{{{{{\left( {{\mu^{*}}-\lambda } \right)}}^2}}}\ln \left( {\frac{{{c_f}+{c_c}}}{{{c_c}}}} \right)\Leftrightarrow \frac{{d{X^{*}}}}{{d{\mu^{*}}\left( \beta \right)}}=\frac{{-{X^{*}}}}{{\left( {{\mu^{*}}-\lambda } \right)}} \hfill \\ \Rightarrow \frac{{d{\mu^{*}}\left( \beta \right)}}{{d\beta }}=\frac{{\left( {{c_f}+{c_c}} \right)\int\limits_0^{{{X^{*}}}} {{\tau^2}{e^{{-\left( {{\mu^{*}}-\lambda +\beta } \right)\tau }}}} d\tau }}{{\frac{{2\left( {{c_y}+{c_c}} \right)}}{{{{{\left( {{\mu^{*}}-\lambda } \right)}}^3}}}-\left( {{c_f}+{c_c}} \right)\left( {\int\limits_0^{{{X^{*}}}} {{\tau^2}{e^{{-\left( {{\mu^{*}}-\lambda +\beta } \right)\tau }}}} d\tau +\frac{{{{{\left( {{X^{*}}} \right)}}^2}{e^{{-\left( {{\mu^{*}}-\lambda +\beta } \right){X^{*}}}}}}}{{\left( {{\mu^{*}}-\lambda } \right)}}} \right)}} \end{array} $$
(4.36)

which is positive if the denominator is positive:

$$ \frac{{2\left( {{c_y}+{c_c}} \right)}}{{{{{\left( {{\mu^{*}}-\lambda } \right)}}^3}}}\mathop{>}\limits^{!}\left( {{c_f}+{c_c}} \right)\left( {\int\limits_0^{{{X^{*}}}} {{\tau^2}{e^{{-\left( {{\mu^{*}}-\lambda +\beta } \right)\tau }}}} d\tau +\frac{{{{{\left( {{X^{*}}} \right)}}^2}}}{{\left( {{\mu^{*}}-\lambda } \right)}}{e^{{-\left( {{\mu^{*}}-\lambda +\beta } \right){X^{*}}}}}} \right) $$
(4.37)

From the optimality condition (4.20):

$$ \begin{array}{lllll} \frac{{2{c_{\mu }}}}{{\lambda \left( {{\mu^{*}}-\lambda } \right)}}+\frac{2}{{\left( {{\mu^{*}}-\lambda } \right)}}\frac{{{c_f}+{c_c}}}{{{\mu^{*}}+\beta -\lambda }}\left( {\frac{{1-{e^{{-\left( {{\mu^{*}}+\beta -\lambda } \right){X^{*}}}}}}}{{\left( {{\mu^{*}}+\beta -\lambda } \right)}}-{e^{{-\left( {{\mu^{*}}+\beta -\lambda } \right){X^{*}}}}}{X^{*}}} \right)\mathop{>}\limits^{!} \hfill \\ \left( {{c_f}+{c_c}} \right)\left( {\int\limits_0^{{{X^{*}}}} {{\tau^2}{e^{{-\left( {{\mu^{*}}-\lambda +\beta } \right)\tau }}}} d\tau +\frac{{{{{\left( {{X^{*}}} \right)}}^2}}}{{\left( {{\mu^{*}}-\lambda } \right)}}{e^{{-\left( {{\mu^{*}}-\lambda +\beta } \right){X^{*}}}}}} \right) \hfill \\ \Leftrightarrow -\frac{{{{{\left( {{\mu^{*}}+\beta -\lambda } \right)}}^2}}}{{\left( {{\mu^{*}}-\lambda } \right)}}\left( {\frac{{2{e^{{-\left( {{\mu^{*}}+\beta -\lambda } \right){X^{*}}}}}{X^{*}}+\left( {{\mu^{*}}+\beta -\lambda } \right){{{\left( {{X^{*}}} \right)}}^2}{e^{{-\left( {{\mu^{*}}-\lambda +\beta } \right){X^{*}}}}}}}{{{{{\left( {{\mu^{*}}+\beta -\lambda } \right)}}^3}}}} \right) \hfill \\ +\frac{{\left( {{\mu^{*}}+\beta -\lambda } \right)}}{{\left( {{\mu^{*}}-\lambda } \right)}}\left( {\frac{{2-2{e^{{-\left( {{\mu^{*}}+\beta -\lambda } \right){X^{*}}}}}}}{{{{{\left( {{\mu^{*}}+\beta -\lambda } \right)}}^3}}}} \right)+\frac{{2{c_{\mu }}}}{{\lambda \left( {{\mu^{*}}-\lambda } \right)\left( {{c_f}+{c_c}} \right)}}\mathop{>}\limits^{!}\int\limits_0^{{{X^{*}}}} {{\tau^2}{e^{{-\left( {{\mu^{*}}-\lambda +\beta } \right)\tau }}}} d\tau \end{array} $$
(4.38)

with

$$ \begin{array}{llll} \int\limits_0^{{{X^{*}}}} {{\tau^2}{e^{{-\left( {{\mu^{*}}-\lambda +\beta } \right)\tau }}}} d\tau = \hfill \\ =\frac{{2-{e^{{-\left( {{\mu^{*}}-\lambda +\beta } \right){X^{*}}}}}\left( {2+2\left( {{\mu^{*}}-\lambda +\beta } \right){X^{*}}+{{{\left( {{\mu^{*}}-\lambda +\beta } \right)}}^2}{{{\left( {{X^{*}}} \right)}}^2}} \right)}}{{{{{\left( {{\mu^{*}}-\lambda +\beta } \right)}}^3}}} \end{array} $$
(4.39)

it follows that:

$$ \frac{{2{c_{\mu }}}}{{\lambda \left( {{\mu^{*}}-\lambda } \right)\left( {{c_f}+{c_c}} \right)}}+\left( {\frac{{\left( {{\mu^{*}}-\lambda +\beta } \right)}}{{\left( {{\mu^{*}}-\lambda } \right)}}-1} \right)\int\limits_0^{{{X^{*}}}} {{\tau^2}{e^{{-\left( {{\mu^{*}}-\lambda +\beta } \right)\tau }}}} d\tau \mathop{>}\limits^{!}0 $$
(4.40)

which obviously holds for any cost structure.

Derivation of Equations ( 4.22 ) and ( 4.23 )

Restating the cost function from Eq. (4.21) leads to:

$$ \begin{array}{llll} C\left( {{X_1},{X_2}} \right)=\ \lambda \left( {{c_{y,1 }}+{c_c}} \right)\left( {E\left[ {{W_1}} \right]+\int\limits_0^{{{X_2}}} {{F_{{{W_2}}}}\left( \tau \right)\left( {1-{F_L}\left( {\tau +{X_1}} \right)} \right)d\tau } } \right)+ \hfill \cr +\lambda \left( {{c_f}+{c_c}} \right)\int\limits_X^{\infty } {{F_{{{W_2}}}}\left( {{X_2}} \right)\int\limits_0^{{{X_1}}} {{f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {{X_1}-{\tau_1}} \right)d{\tau_1}} } {f_L}\left( \theta \right)d\theta \hfill \cr +\lambda \left( {{c_f}+{c_c}} \right)\int\limits_X^{\infty } {\int\limits_{{{X_2}}}^X {\int\limits_0^{{X-{\tau_2}}} {{f_{{{W_2}}}}\left( {{\tau_2}} \right){f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {X-{\tau_2}-{\tau_1}} \right)d{\tau_2}d{\tau_1}} } } {f_L}\left( \theta \right)d\theta \hfill \cr +\lambda \left( {{c_f}+{c_c}} \right)\int\limits_{{{X_1}}}^X {{F_{{{W_2}}}}\left( {\theta -{X_1}} \right)\int\limits_0^{{{X_1}}} {{f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {{X_1}-{\tau_1}} \right)d{\tau_1}} } {f_L}\left( \theta \right)d\theta \hfill \cr \ +\lambda \left( {{c_f}+{c_c}} \right)\int\limits_{{{X_1}}}^X {\int\limits_{{\theta -{X_1}}}^{\theta } {\int\limits_0^{{\theta -{\tau_2}}} {{f_{{{W_2}}}}\left( {{\tau_2}} \right){f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {\theta -{\tau_2}-{\tau_1}} \right)d{\tau_2}d{\tau_1}} } } {f_L}\left( \theta \right)d\theta \hfill \cr +\lambda \left( {{c_f}+{c_c}} \right)\int\limits_0^{{{X_1}}} {\int\limits_0^{\theta } {\int\limits_0^{{\theta -{\tau_2}}} {{f_{{{W_2}}}}\left( {{\tau_2}} \right){f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {\theta -{\tau_2}-{\tau_1}} \right)d{\tau_2}d{\tau_1}} } } {f_L}\left( \theta \right)d\theta \hfill \cr -\lambda {c_c}\int\limits_0^X {\left( {1-{F_L}\left( \tau \right)} \right)d\tau } -{\chi_1}{X_1}-{\chi_2}{X_2} \end{array} $$
(4.41)

Taking the first derivative of the restated cost function with respect to \( {X_1} \) shows:

$$ \begin{array}{llllllllll} \frac{{dC\left( {{X_1},{X_2}} \right)}}{{d{X_1}}}=-\lambda \left( {{c_{y,1 }}+{c_c}} \right)\int\limits_0^{{{X_2}}} {{F_{{{W_2}}}}\left( \tau \right){f_L}\left( {\tau +{X_1}} \right)d\tau } -\lambda {c_c}\left( {1-{F_L}(X)} \right) \hfill \\ +\lambda \left( {{c_f}+{c_c}} \right){F_{{{W_2}}}}\left( {{X_2}} \right)\left( {\int\limits_X^{\infty } {{f_L}\left( \theta \right)\int\limits_0^{{{X_1}}} {{f_{{{W_1}}}}\left( {{\tau_1}} \right)d{\tau_1}} } d\theta -{f_L}(X)\int\limits_0^{{{X_1}}} {{f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {{X_1}-{\tau_1}} \right)d{\tau_1}} } \right) \hfill \\ +\lambda \left( {{c_f}+{c_c}} \right)\int\limits_X^{\infty } {{f_L}\left( \theta \right)d\theta } \left( {\int\limits_{{{X_2}}}^X {\int\limits_0^{{X-{\tau_2}}} {{f_{{{W_2}}}}\left( {{\tau_2}} \right){f_{{{W_1}}}}\left( {{\tau_1}} \right)d{\tau_1}} d{\tau_2}} } \right) \hfill \\ -\lambda \left( {{c_f}+{c_c}} \right){f_L}(X)\int\limits_{{{X_2}}}^X {\int\limits_0^{{X-{\tau_2}}} {{f_{{{W_2}}}}\left( {{\tau_2}} \right){f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {X-{\tau_2}-{\tau_1}} \right)d{\tau_1}} d{\tau_2}} \hfill \\ +\lambda \left( {{c_f}+{c_c}} \right)\int\limits_{{{X_1}}}^X {{F_{{{W_2}}}}\left( {\theta -{X_1}} \right){f_L}\left( \theta \right)d\theta } \int\limits_0^{{{X_1}}} {{f_{{{W_1}}}}\left( {{\tau_1}} \right)d{\tau_1}} \hfill \\ +\lambda \left( {{c_f}+{c_c}} \right){F_{{{W_2}}}}\left( {X-{X_1}} \right){f_L}(X)\int\limits_0^{{{X_1}}} {{f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {{X_1}-{\tau_1}} \right)d{\tau_1}} \hfill \\ -\lambda \left( {{c_f}+{c_c}} \right)\int\limits_{{{X_1}}}^X {{f_{{{W_2}}}}\left( {\theta -{X_1}} \right){f_L}\left( \theta \right)d\theta } \int\limits_0^{{{X_1}}} {{f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {{X_1}-{\tau_1}} \right)d{\tau_1}} \hfill \\ +\lambda \left( {{c_f}+{c_c}} \right){f_L}(X)\int\limits_{{X-{X_1}}}^X {\int\limits_0^{{X-{\tau_2}}} {{f_{{{W_2}}}}\left( {{\tau_2}} \right){f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {X-{\tau_2}-{\tau_1}} \right)d{\tau_2}d{\tau_1}} } \hfill \\ -\lambda \left( {{c_f}+{c_c}} \right){f_L}\left( {{X_1}} \right)\int\limits_0^{{{X_1}}} {\int\limits_0^{{{X_1}-{\tau_2}}} {{f_{{{W_2}}}}\left( {{\tau_2}} \right){f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {{X_1}-{\tau_2}-{\tau_1}} \right)d{\tau_2}d{\tau_1}} } \hfill \\ +\lambda \left( {{c_f}+{c_c}} \right)\int\limits_{{{X_1}}}^X {{f_L}\left( \theta \right)\int\limits_0^{{{X_1}}} {{f_{{{W_2}}}}\left( {\theta -{X_1}} \right){f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {{X_1}-{\tau_1}} \right)d{\tau_1}} d\theta } \hfill \\ +\lambda \left( {{c_f}+{c_c}} \right){f_L}\left( {{X_1}} \right)\int\limits_0^{{{X_1}}} {\int\limits_0^{{{X_1}-{\tau_2}}} {{f_{{{W_2}}}}\left( {{\tau_2}} \right){f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {{X_1}-{\tau_2}-{\tau_1}} \right)d{\tau_2}d{\tau_1}} } -{\chi_1}=0 \hfill \\ \Leftrightarrow \left( {{c_f}+{c_c}} \right){F_{{{W_1}}}}\left( {{X_1}} \right)\int\limits_{{{X_1}}}^{{{X_1}+{X_2}}} {{F_{{{W_2}}}}\left( {\tau -{X_1}} \right){f_L}\left( \tau \right)d\tau } \hfill \\ +\left( {{c_f}+{c_c}} \right)\left( {1-{F_L}(X)} \right)\int\limits_{{{X_2}}}^{{{X_1}+{X_2}}} {{F_{{{W_2}}}}\left( \tau \right)} {f_{{{W_1}}}}\left( {{X_1}+{X_2}-\tau } \right)d\tau \hfill \\ -\left( {{c_{y,1 }}+{c_c}} \right)\int\limits_0^{{{X_2}}} {{F_{{{W_2}}}}\left( \tau \right){f_L}\left( {\tau +{X_1}} \right)d\tau } -{c_c}\left( {1-{F_L}(X)} \right)-\frac{{{\chi_1}}}{\lambda }=0 \hfill \\ \Leftrightarrow \left( {{c_f}+{c_c}} \right){F_{{{W_1}}}}\left( {{X_1}} \right)\left( {{F_{{{W_2}}}}\left( {{X_2}} \right){F_L}(X)-\int\limits_{{{X_1}}}^X {{f_{{{W_2}}}}\left( {\tau -{X_1}} \right){F_L}\left( \tau \right)d\tau } } \right) \hfill \\ +\left( {{c_f}+{c_c}} \right)\left( {1-{F_L}(X)} \right)\int\limits_{{{X_2}}}^{{{X_1}+{X_2}}} {{F_{{{W_2}}}}\left( \tau \right)} {f_{{{W_1}}}}\left( {{X_1}+{X_2}-\tau } \right)d\tau -{c_c}\left( {1-{F_L}(X)} \right)-\frac{{{\chi_1}}}{\lambda } \hfill \\ =\left( {{c_{y,1 }}+{c_c}} \right)\left( {{F_{{{W_2}}}}\left( {{X_2}} \right){F_L}(X)-\left( {{F_{{{W_2}}}}\left( {{X_2}} \right){F_L}(X)-\int\limits_0^{{{X_2}}} {{F_{{{W_2}}}}\left( \tau \right){f_L}\left( {\tau +{X_1}} \right)d\tau } } \right)} \right) \hfill \\ \end{array} $$
(4.42)

Rearranging terms:

$$ \begin{array}{llll} \Leftrightarrow \left( {\left( {{c_f}+{c_c}} \right){F_{{{W_1}}}}\left( {{X_1}} \right)-\left( {{c_{y,1 }}+{c_c}} \right)} \right)\int\limits_0^{{{X_2}}} {{F_{{{W_2}}}}\left( \tau \right){f_L}\left( {\tau +{X_1}} \right)d\tau } \hfill \\ +\left( {{c_f}+{c_c}} \right)\left( {1-{F_L}\left( {{X_1}+{X_2}} \right)} \right)\int\limits_{{{X_2}}}^{{{X_1}+{X_2}}} {{F_{{{W_2}}}}\left( \tau \right)} {f_{{{W_1}}}}\left( {{X_1}+{X_2}-\tau } \right)d\tau \hfill \\ -{c_c}\left( {1-{F_L}\left( {{X_1}+{X_2}} \right)} \right)-\frac{{{\chi_1}}}{\lambda }=0 \hfill \\ \end{array} $$
(4.43)

Taking the first derivative of the restated cost function with respect to \( {X_2} \) leads to:

$$ \begin{array}{lllllll} \frac{{dC\left( {{X_1},{X_2}} \right)}}{{d{X_2}}}=\lambda \left( {{c_{y,1 }}+{c_c}} \right){F_{{{W_2}}}}\left( {{X_2}} \right)\left( {1-{F_L}(X)} \right) \hfill \\ -\lambda \left( {{c_f}+{c_c}} \right){F_{{{W_2}}}}\left( {{X_2}} \right){f_L}(X)\int\limits_0^{{{X_1}}} {{f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {{X_1}-{\tau_1}} \right)d{\tau_1}} \hfill \\ +\lambda \left( {{c_f}+{c_c}} \right){f_{{{W_2}}}}\left( {{X_2}} \right)\int\limits_X^{\infty } {{f_L}\left( \theta \right)d\theta \int\limits_0^{{{X_1}}} {{f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {{X_1}-{\tau_1}} \right)d{\tau_1}} } \hfill \\ -\lambda \left( {{c_f}+{c_c}} \right)\int\limits_X^{\infty } {{f_L}\left( \theta \right)d\theta } \int\limits_0^{{X-{X_2}}} {{f_{{{W_2}}}}\left( {{X_2}} \right){f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {{X_1}-{\tau_1}} \right)d{\tau_1}} \hfill \\ +\lambda \left( {{c_f}+{c_c}} \right)\int\limits_X^{\infty } {{f_L}\left( \theta \right)d\theta } \int\limits_{{{X_2}}}^X {\int\limits_0^{{X-{\tau_2}}} {{f_{{{W_2}}}}\left( {{\tau_2}} \right){f_{{{W_1}}}}\left( {{\tau_1}} \right)d{\tau_1}} d{\tau_2}} \hfill \\ -\lambda \left( {{c_f}+{c_c}} \right){f_L}(X)\int\limits_{{{X_2}}}^X {\int\limits_0^{{X-{\tau_2}}} {{f_{{{W_2}}}}\left( {{\tau_2}} \right){f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {X-{\tau_2}-{\tau_1}} \right)d{\tau_1}} d{\tau_2}} \hfill \\ +\lambda \left( {{c_f}+{c_c}} \right){F_{{{W_2}}}}\left( {X-{X_1}} \right){f_L}(X)\int\limits_0^{{{X_1}}} {{f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {{X_1}-{\tau_1}} \right)d{\tau_1}} \hfill \\ +\lambda \left( {{c_f}+{c_c}} \right){f_L}(X)\int\limits_{{X-{X_1}}}^X {\int\limits_0^{{X-{\tau_2}}} {{f_{{{W_2}}}}\left( {{\tau_2}} \right){f_{{{W_1}}}}\left( {{\tau_1}} \right)\left( {X-{\tau_2}-{\tau_1}} \right)d{\tau_2}d{\tau_1}} } \hfill \\ -\lambda {c_c}\left( {1-{F_L}(X)} \right)-{\chi_2} \hfill \\ \Leftrightarrow \left( {{c_f}+{c_c}} \right)\left( {1-{F_L}(X)} \right)\int\limits_{{{X_2}}}^X {{f_{{{W_2}}}}\left( \tau \right)} {F_{{{W_1}}}}\left( {X-\tau } \right)d\tau \hfill \\ +\left( {{c_{y,1 }}+{c_c}} \right){F_{{{W_2}}}}\left( {{X_2}} \right)\left( {1-{F_L}(X)} \right)-{c_c}\left( {1-{F_L}(X)} \right)-\frac{{{\chi_2}}}{\lambda }=0 \hfill \\ \Leftrightarrow \left( {\left( {{c_{y,1 }}+{c_c}} \right)-\left( {{c_f}+{c_c}} \right){F_{{{W_1}}}}\left( {{X_1}} \right)} \right)\left( {1-{F_L}\left( {{X_1}+{X_2}} \right)} \right){F_{{{W_2}}}}\left( {{X_2}} \right) \hfill \\ +\left( {{c_f}+{c_c}} \right)\left( {1-{F_L}\left( {{X_1}+{X_2}} \right)} \right)\int\limits_{{{X_2}}}^{{{X_1}+{X_2}}} {{F_{{{W_2}}}}\left( \tau \right)} {f_{{{W_1}}}}\left( {{X_1}+{X_2}-\tau } \right)d\tau \hfill \\ -{c_c}\left( {1-{F_L}\left( {{X_1}+{X_2}} \right)} \right)-\frac{{{\chi_2}}}{\lambda }=0 \hfill \\ \end{array} $$
(4.44)

Derivation of Equation ( 4.28 )

$$ \begin{array}{lllllll} E\left[ I \right]=\left( {1-{F_L}(X)} \right)\int\limits_0^{{{X_1}}} {\left( {1-{e^{{-\left( {{\mu_2}-\lambda } \right)\left( {\tau +{X_2}} \right)}}}} \right)\left( {1-{e^{{-\left( {{\mu_1}-\lambda } \right)\left( {{X_1}-\tau } \right)}}}} \right)d\tau } \hfill \\ +\int\limits_0^{{{X_1}}} {\left( {1-{e^{{-\left( {{\mu_1}-\lambda } \right)\tau }}}} \right)d\tau } \int\limits_0^{{{X_2}}} {\left( {{\mu_2}-\lambda } \right){e^{{-\left( {{\mu_2}-\lambda } \right)\theta }}}} {f_L}\left( {\theta +{X_1}} \right)d\theta \hfill \\ +\int\limits_{{{X_1}}}^X {\int\limits_{{\theta -{X_1}}}^{\theta } {\int\limits_0^{{\theta -{\tau_2}}} {\left( {{\mu_2}-\lambda } \right){e^{{-\left( {{\mu_2}-\lambda } \right){\tau_2}}}}\left( {{\mu_1}-\lambda } \right){e^{{-\left( {{\mu_1}-\lambda } \right){\tau_1}}}}\left( {\theta -{\tau_2}-{\tau_1}} \right)d{\tau_2}d{\tau_1}} } } {f_L}\left( \theta \right)d\theta \hfill \\ +\int\limits_0^{{{X_1}}} {\int\limits_0^{\theta } {\int\limits_0^{{\theta -{\tau_2}}} {\left( {{\mu_2}-\lambda } \right){e^{{-\left( {{\mu_2}-\lambda } \right){\tau_2}}}}\left( {{\mu_1}-\lambda } \right){e^{{-\left( {{\mu_1}-\lambda } \right){\tau_1}}}}\left( {\theta -{\tau_2}-{\tau_1}} \right)d{\tau_2}d{\tau_1}} } } {f_L}\left( \theta \right)d\theta \hfill \\ =\left( {1-{F_L}(X)} \right)\left( {{X_1}-\frac{{1-{e^{{-\left( {{\mu_1}-\lambda } \right){X_1}}}}}}{{{\mu_1}-\lambda }}+\frac{{{e^{{-\left( {{\mu_2}-\lambda } \right)X}}}}}{{{\mu_1}-{\mu_2}}}} \right. \hfill \\ \left. {+\frac{{{e^{{-\left( {{\mu_2}-\lambda } \right)X}}}}}{{{\mu_2}-\lambda }}-\frac{{{e^{{-\left( {{\mu_2}-\lambda } \right){X_2}}}}}}{{{\mu_2}-\lambda }}-\frac{{{e^{{-\left( {{\mu_2}-\lambda } \right){X_2}-\left( {{\mu_1}-\lambda } \right){X_1}}}}}}{{{\mu_2}-\lambda }}} \right) \hfill \\ +\left( {{X_1}-\frac{{1-{e^{{-\left( {{\mu_1}-\lambda } \right){X_1}}}}}}{{{\mu_1}-\lambda }}} \right)\left( {{\mu_2}-\lambda } \right)\int\limits_0^{{{X_2}}} {{e^{{-\left( {{\mu_2}-\lambda } \right)\theta }}}} {f_L}\left( {\theta +{X_1}} \right)d\theta \hfill \\ +\int\limits_{{{X_1}}}^X {{f_L}\left( \theta \right)\int\limits_{{\theta -{X_1}}}^{\theta } {\left( {{\mu_2}-\lambda } \right){e^{{-\left( {{\mu_2}-\lambda } \right){\tau_2}}}}\frac{{-1+{e^{{-\left( {{\mu_1}-\lambda } \right)\left( {\theta -{\tau_2}} \right)}}}+\left( {{\mu_1}-\lambda } \right)\left( {\theta -{\tau_2}} \right)}}{{\left( {{\mu_1}-\lambda } \right)}}d{\tau_2}} } d\theta \hfill \\ +\int\limits_0^{{{X_1}}} {{f_L}\left( \theta \right)\int\limits_0^{\theta } {\left( {{\mu_2}-\lambda } \right){e^{{-\left( {{\mu_2}-\lambda } \right){\tau_2}}}}\frac{{-1+{e^{{-\left( {{\mu_1}-\lambda } \right)\left( {\theta -{\tau_2}} \right)}}}+\left( {{\mu_1}-\lambda } \right)\left( {\theta -{\tau_2}} \right)}}{{\left( {{\mu_1}-\lambda } \right)}}d{\tau_2}} } d\theta \hfill \\ =\left( {1-{F_L}(X)} \right)\left( {{X_1}-\frac{{1-{e^{{-\left( {{\mu_1}-\lambda } \right){X_1}}}}}}{{{\mu_1}-\lambda }}+\frac{{{e^{{-\left( {{\mu_2}-\lambda } \right)X}}}}}{{{\mu_1}-{\mu_2}}}} \right. \hfill \\ \left. {+\frac{{{e^{{-\left( {{\mu_2}-\lambda } \right)X}}}}}{{{\mu_2}-\lambda }}-\frac{{{e^{{-\left( {{\mu_2}-\lambda } \right){X_2}}}}}}{{{\mu_2}-\lambda }}-\frac{{{e^{{-\left( {{\mu_2}-\lambda } \right){X_2}-\left( {{\mu_1}-\lambda } \right){X_1}}}}}}{{{\mu_2}-\lambda }}} \right) \hfill \\ +\left( {{X_1}-\frac{{1-{e^{{-\left( {{\mu_1}-\lambda } \right){X_1}}}}}}{{{\mu_1}-\lambda }}} \right)\left( {{\mu_2}-\lambda } \right)\int\limits_0^{{{X_2}}} {{e^{{-\left( {{\mu_2}-\lambda } \right)\theta }}}} {f_L}\left( {\theta +{X_1}} \right)d\theta \hfill \\ +\int\limits_{{{X_1}}}^X {{f_L}\left( \theta \right)} \left( {\frac{{{e^{{-\left( {{\mu_2}-\lambda } \right)\theta }}}-{e^{{-\left( {{\mu_2}-\lambda } \right)\left( {\theta -{X_1}} \right)}}}}}{{\left( {{\mu_1}-\lambda } \right)}}-\frac{{\left( {{\mu_2}-\lambda } \right)}}{{\left( {{\mu_1}-\lambda } \right)}}\frac{{{e^{{-\left( {{\mu_2}-\lambda } \right)\theta }}}-{e^{{-\left( {{\mu_2}-{\mu_1}} \right)\left( {\theta -{X_1}} \right)-\left( {{\mu_1}-\lambda } \right)\theta }}}}}{{\left( {{\mu_2}-{\mu_1}} \right)}}} \right. \hfill \\ \left. {+\frac{{{e^{{-\left( {{\mu_2}-\lambda } \right)\theta }}}-{e^{{-\left( {{\mu_2}-\lambda } \right)\left( {\theta -{X_1}} \right)}}}}}{{\left( {{\mu_2}-\lambda } \right)}}+{e^{{-\left( {{\mu_2}-\lambda } \right)\left( {\theta -{X_1}} \right)}}}\theta -{e^{{-\left( {{\mu_2}-\lambda } \right)\left( {\theta -{X_1}} \right)}}}\left( {\theta -{X_1}} \right)} \right)d\theta \hfill \\ +\int\limits_0^{{{X_1}}} {{f_L}\left( \theta \right)\left( {\frac{{{e^{{-\left( {{\mu_2}-\lambda } \right)\theta }}}-1}}{{\left( {{\mu_1}-\lambda } \right)}}-\frac{{\left( {{\mu_2}-\lambda } \right)}}{{\left( {{\mu_1}-\lambda } \right)}}\frac{{{e^{{-\left( {{\mu_2}-\lambda } \right)\theta }}}-{e^{{-\left( {{\mu_1}-\lambda } \right)\theta }}}}}{{\left( {{\mu_2}-{\mu_1}} \right)}}+\frac{{{e^{{-\left( {{\mu_2}-\lambda } \right)\theta }}}-1}}{{\left( {{\mu_2}-\lambda } \right)}}+\theta } \right)d\theta } \hfill \\ \end{array} $$
(4.45)

With exponential distribution for customer required lead time:

$$ \begin{array}{lllllll} E\left[ I \right]={e^{{-\beta X}}}\left( {{X_1}-\frac{{1-{e^{{-\left( {{\mu_1}-\lambda } \right){X_1}}}}}}{{{\mu_1}-\lambda }}+\frac{{{e^{{-\left( {{\mu_2}-\lambda } \right)X}}}}}{{{\mu_1}-{\mu_2}}}+\frac{{{e^{{-\left( {{\mu_2}-\lambda } \right)X}}}}}{{{\mu_2}-\lambda }}-\frac{{{e^{{-\left( {{\mu_2}-\lambda } \right){X_2}}}}}}{{{\mu_2}-\lambda }}} \right. \hfill \\ \left. {-\frac{{{e^{{-\left( {{\mu_2}-\lambda } \right){X_2}-\left( {{\mu_1}-\lambda } \right){X_1}}}}}}{{{\mu_2}-\lambda }}} \right)+\left( {{X_1}-\frac{{1-{e^{{-\left( {{\mu_1}-\lambda } \right){X_1}}}}}}{{{\mu_1}-\lambda }}} \right)\frac{{\left( {{e^{{-\beta {X_1}}}}-{e^{{-\left( {{\mu_2}-\lambda +\beta } \right){X_2}-\beta {X_1}}}}} \right)\beta \left( {{\mu_2}-\lambda } \right)}}{{\left( {{\mu_2}-\lambda +\beta } \right)}} \hfill \\ +\frac{{\left( {{\mu_2}-\lambda } \right)\beta \left( {{e^{{-\left( {{\mu_1}-\lambda +\beta } \right){X_1}}}}-{e^{{-\left( {{\mu_1}-\lambda +\beta } \right){X_1}-\left( {{\mu_2}-\lambda +\beta } \right){X_2}}}}} \right)}}{{\left( {{\mu_2}-{\mu_1}} \right)\left( {{\mu_2}-\lambda +\beta } \right)\left( {{\mu_1}-\lambda } \right)}} \hfill \\ +\frac{{{e^{{-\left( {{\mu_2}-\lambda +\beta } \right){X_2}-\beta {X_1}}}}\beta \left( {{\mu_1}+{\mu_2}-2\lambda -{X_1}\left( {{\mu_1}-\lambda } \right)\left( {{\mu_2}-\lambda } \right)} \right)}}{{\left( {{\mu_2}-\lambda +\beta } \right)\left( {{\mu_1}-\lambda } \right)\left( {{\mu_2}-\lambda } \right)}} \hfill \\ +\frac{{{e^{{-\left( {{\mu_2}-\lambda +\beta } \right)X}}}\beta \left( {\left( {{\mu_1}-\lambda } \right){\mu_2}+\lambda \left( {{\mu_2}-\lambda } \right)-{\mu_1}\left( {{\mu_1}+{\mu_2}-2\lambda } \right)} \right)}}{{\left( {{\mu_2}-{\mu_1}} \right)\left( {{\mu_2}-\lambda +\beta } \right)\left( {{\mu_1}-\lambda } \right)\left( {{\mu_2}-\lambda } \right)}} \hfill \\ +\frac{{{e^{{-\left( {{\mu_2}-\lambda +\beta } \right){X_1}}}}\beta \left( {{\mu_1}\left( {{\mu_1}+{\mu_2}-2\lambda } \right)-\left( {{\mu_1}-\lambda } \right){\mu_2}-\lambda \left( {{\mu_2}-\lambda } \right)} \right)}}{{\left( {{\mu_2}-{\mu_1}} \right)\left( {{\mu_2}-\lambda +\beta } \right)\left( {{\mu_1}-\lambda } \right)\left( {{\mu_2}-\lambda } \right)}} \hfill \\ +\frac{{{e^{{-\beta {X_1}}}}\beta \left( {-\left( {{\mu_2}-\lambda } \right)+\left( {{\mu_1}-\lambda } \right)\left( {-1+{X_1}\left( {{\mu_2}-\lambda } \right)} \right)} \right)}}{{\left( {{\mu_2}-\lambda +\beta } \right)\left( {{\mu_1}-\lambda } \right)\left( {{\mu_2}-\lambda } \right)}}-\frac{{1-{e^{{-\beta {X_1}}}}}}{{\left( {{\mu_1}-\lambda } \right)}} \hfill \\ +\frac{{\beta \left( {1-{e^{{-\left( {{\mu_2}-\lambda +\beta } \right){X_1}}}}} \right)}}{{\left( {{\mu_1}-\lambda } \right)\left( {{\mu_2}-\lambda +\beta } \right)}}+\frac{{\beta \left( {{\mu_2}-\lambda } \right)}}{{\left( {{\mu_1}-\lambda } \right)\left( {{\mu_2}-{\mu_1}} \right)}}\left( {\frac{{1-{e^{{-\left( {{\mu_1}-\lambda +\beta } \right){X_1}}}}}}{{\left( {{\mu_1}-\lambda +\beta } \right)}}-\frac{{1-{e^{{-\left( {{\mu_2}-\lambda +\beta } \right){X_1}}}}}}{{\left( {{\mu_2}-\lambda +\beta } \right)}}} \right) \hfill \\ -\frac{{1-{e^{{-\beta {X_1}}}}}}{{\left( {{\mu_2}-\lambda } \right)}}+\beta \frac{{1-{e^{{-\left( {{\mu_2}-\lambda +\beta } \right){X_1}}}}}}{{\left( {{\mu_2}-\lambda } \right)\left( {{\mu_2}-\lambda +\beta } \right)}}+\frac{{1-{e^{{-\beta {X_1}}}}\left( {1+\beta {X_1}} \right)}}{\beta } \hfill \\ \end{array} $$
(4.46)

Simplifying and rearranging terms leads to:

$$ \begin{array}{llllll} E\left[ I \right]=\frac{{{e^{{-\left( {{\mu_2}-\lambda +\beta } \right){X_2}-\left( {{\mu_2}-\lambda +\beta } \right){X_1}}}}\left( {{\mu_1}-\lambda } \right)}}{{\left( {{\mu_1}-{\mu_2}} \right)\left( {{\mu_2}-\lambda +\beta } \right)}}-\frac{{{e^{{-\left( {{\mu_2}-\lambda +\beta } \right){X_2}-\left( {{\mu_1}-\lambda +\beta } \right){X_1}}}}\left( {{\mu_2}-\lambda } \right)}}{{\left( {{\mu_1}-{\mu_2}} \right)\left( {{\mu_2}-\lambda +\beta } \right)}} \hfill \\ -\frac{{{e^{{-\left( {{\mu_2}-\lambda +\beta } \right){X_2}-\beta {X_1}}}}}}{{\left( {{\mu_2}-\lambda +\beta } \right)}}+\frac{{{e^{{\left( {{\mu_1}-\lambda +\beta } \right){X_1}}}}\left( {{\mu_2}-\lambda } \right)}}{{\left( {{\mu_1}-\lambda +\beta } \right)\left( {{\mu_2}-\lambda +\beta } \right)}} \hfill \\ -\frac{{{e^{{-\beta {X_1}}}}\left( {{\mu_2}-\lambda } \right)}}{{\beta \left( {{\mu_2}-\lambda +\beta } \right)}}+\frac{{\left( {{\mu_1}-\lambda } \right)\left( {{\mu_2}-\lambda } \right)}}{{\beta \left( {{\mu_1}-\lambda +\beta } \right)\left( {{\mu_2}-\lambda +\beta } \right)}} \hfill \\ \end{array} $$
(4.47)

4.1.1 Optimality Conditions in Two-Stage M/M/1 System

The following optimality conditions for \( {X_1} \) and \( {X_2} \) can be stated with Eqs. (4.25) and (4.26):

$$ \begin{array}{llllll} X_2^{*}=0: \hfill \\ X_1^{*}:\int\limits_0^{{{X_1}}} {\left( {1-{e^{{-\left( {{\mu_2}-\lambda } \right)\tau }}}} \right)\left( {{\mu_1}-\lambda } \right){e^{{-\left( {{\mu_1}-\lambda } \right)\left( {{X_1}-\tau } \right)}}}} d\tau =\frac{{{c_c}}}{{{c_f}+{c_c}}} \hfill \\ \Leftrightarrow \frac{{{c_f}}}{{{c_f}+{c_c}}}=\frac{{\left( {{\mu_1}-\lambda } \right){e^{{-\left( {{\mu_2}-\lambda } \right){X_1}}}}-\left( {{\mu_2}-\lambda } \right){e^{{-\left( {{\mu_1}-\lambda } \right){X_1}}}}}}{{\left( {{\mu_1}-{\mu_2}} \right)}} \hfill \\ \end{array} $$
(4.48)
$$ \begin{array}{lllllll} X_2^{*}>0: \hfill \\ X_1^{*}:\frac{{{c_{y,1 }}+{c_c}}}{{{c_f}+{c_c}}}={F_{{{W_1}}}}\left( {{X_1}} \right)\Leftrightarrow X_1^{*}=\frac{1}{{\left( {{\mu_1}-\lambda } \right)}}\ln \left( {\frac{{{c_f}+{c_c}}}{{{c_f}-{c_{y,1 }}}}} \right) \hfill \\ X_2^{*}:\int\limits_{{{X_2}}}^{{{X_1}+{X_2}}} {\left( {1-{e^{{-\left( {{\mu_2}-\lambda } \right)\tau }}}} \right)\left( {{\mu_1}-\lambda } \right){e^{{-\left( {{\mu_1}-\lambda } \right)\left( {{X_1}+{X_2}-\tau } \right)}}}} d\tau =\frac{{{c_c}}}{{{c_f}+{c_c}}} \hfill \\ \Leftrightarrow X_2^{*}=\frac{1}{{{\mu_2}-\lambda }}\left( {\ln \left( {\frac{{{c_f}-{c_{y,1 }}}}{{{c_f}+{c_c}}}-{{{\left( {\frac{{{c_f}-{c_{y,1 }}}}{{{c_f}+{c_c}}}} \right)}}^{{\frac{{{\mu_2}-\lambda }}{{{\mu_1}-\lambda }}}}}} \right)-\ln \left( {\frac{{{c_{y,1 }}}}{{{c_f}+{c_c}}}\frac{{{\mu_2}-{\mu_1}}}{{{\mu_1}-\lambda }}} \right)} \right) \hfill \\ \end{array} $$
(4.49)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Altendorfer, K. (2014). Simultaneous Capacity and Planned Lead Time Optimization. In: Capacity and Inventory Planning for Make-to-Order Production Systems. Lecture Notes in Economics and Mathematical Systems, vol 671. Springer, Cham. https://doi.org/10.1007/978-3-319-00843-1_4

Download citation

Publish with us

Policies and ethics