Abstract
The goal of these notes is to sketch the proof of the following result, due to Perelman and Tian–Zhu: on a Kähler–Einstein Fano manifold with discrete automorphism group, the normalized Kähler–Ricci flow converges smoothly to the unique Kähler–Einstein metric. We also explain an alternative approach due to Berman–Boucksom–Eyssidieux–Guedj–Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This functional seems to have been first explicitly considered by W.Y. Ding in [Ding88, p. 465], hence the chosen terminology.
- 2.
In his seminar talk, Perelman apparently focused on his key estimates and did not say much about the remaining details.
References
T. Aubin, Equation de type Monge-Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. 102, 63–95 (1978)
S. Bando, T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, in Algebraic Geometry (Sendai, 1985), ed. by T. Oda. Advanced Studies in Pure Mathematics, vol. 10 (Kinokuniya, 1987), pp. 11–40 (North-Holland, Amsterdam, 1987)
R. Berman, S. Boucksom, V. Guedj, A. Zeriahi, A variational approach to complex Monge-Ampère equations. Publ. Math. I.H.E.S. 117, 179–245 (2013)
R. Berman, S. Boucksom, P.Eyssidieux, V. Guedj, A. Zeriahi, Kähler–Ricci flow and Ricci iteration on log-Fano varieties (2011). Preprint [arXiv]
B. Berndtsson, A Brunn-Minkowski type inequality for Fano manifolds and the Bando-Mabuchi uniqueness theorem (2011). Preprint [arXiv:1103.0923]
S. Boucksom, P. Eyssidieux, V. Guedj, A. Zeriahi, Monge-Ampère equations in big cohomology classes. Acta Math. 205, 199–262 (2010)
H.D. Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985)
X.X. Chen, H. Li, B. Wang, Kähler–Ricci flow with small initial energy. Geom. Funct. Anal. 18 (5), 1525–1563 (2009)
X.X. Chen, G. Tian, Ricci flow on Kähler-Einstein surfaces. Invent. Math. 147(3), 487–544 (2002)
B. Chow, The Ricci flow on the 2-sphere. J. Differ. Geom. 33(2), 325–334 (1991)
T. Collins, G. Székelyhidi, The twisted Kähler–Ricci flow (2012). Preprint [arXiv:1207.5441]
W.-Y. Ding, Remarks on the existence problem of positive Kähler-Einstein metrics. Math. Ann. 282, 463–471 (1988)
W.-Y. Ding, G. Tian, Kähler-Einstein metrics and the generalized Futaki invariant. Invent. Math. 110(2), 315–335 (1992)
S.K. Donaldson, Kähler geometry on toric manifolds, and some other manifolds with large symmetry, in Handbook of Geometric Analysis, No. 1. Advanced Lectures in Mathematics (ALM), vol. 7 (International Press, Somerville, 2008), pp. 29–75
M. Gill, Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds. Comm. Anal. Geom. 19(2), 277–303 (2011)
V. Guedj, A. Zeriahi, Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15(4), 607–639 (2005)
V. Guedj, A. Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions. J. Funct. Anal. 250, 442–482 (2007)
R. Hamilton, The Ricci flow on surfaces, in Mathematics and General Relativity (Santa Cruz, CA, 1986). Contemporary Mathematics, vol. 71 (American Mathematical Society, Providence, 1988), pp. 237–262
S. Kołodziej, The complex Monge-Ampère equation. Acta Math. 180(1), 69–117 (1998)
H. Li, On the lower bound of the K-energy and F-functional. Osaka J. Math. 45(1), 253–264 (2008)
D.H. Phong, N. Sesum, J. Sturm, Multiplier ideal sheaves and the Kähler–Ricci flow. Comm. Anal. Geom. 15(3), 613–632 (2007)
D.H. Phong, J. Song, J. Sturm, B. Weinkove, The Moser-Trudinger inequality on Kähler-Einstein manifolds. Am. J. Math. 130(4), 1067–1085 (2008)
D.H. Phong, J. Sturm, On stability and the convergence of the Kähler–Ricci flow. J. Differ. Geom. 72(1), 149–168 (2006)
D.H. Phong, J. Sturm, Lectures on stability and constant scalar curvature, in Handbook of Geometric Analysis, No. 3. Advanced Lectures in Mathematics (ALM), vol. 14 (International Press, Somerville, 2010), pp. 357–436
N. Sesum, G. Tian, Bounding scalar curvature and diameter along the Kähler–Ricci flow (after Perelman). J. Inst. Math. Jussieu 7(3), 575–587 (2008)
M. Sherman, B. Weinkove, Interior derivative estimates for the Kähler–Ricci flow (2011). Preprint [arXiv]
Y.T. Siu, in Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics. DMV Seminar, vol. 8 (Birkhäuser, Basel, 1987)
G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101(1), 101–172 (1990)
G. Tian, Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130, 239–265 (1997)
G. Tian, X. Zhu, Convergence of Kähler–Ricci flow. J. Am. Math. Soc. 20(3), 675–699 (2007)
V. Tosatti, Kähler-Einstein metrics on Fano surfaces Expo. Math. 30(1), 11–31 (2012)
C. Villani, Optimal transport. Old and new. Grundlehren der Mathematischen Wissenschaften, vol. 338 (Springer-Verlag, Berlin, 2009), xxii + 973 pp.
X.J. Wang, X. Zhu, Kähler–Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188(1), 87–103 (2004)
S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Comm. Pure Appl. Math. 31(3), 339–411 (1978)
A. Zeriahi, Volume and capacity of sublevel sets of a Lelong class of psh functions. Indiana Univ. Math. J. 50(1), 671–703 (2001)
Acknowledgements
It is a pleasure to thank D.H.Phong for patiently explaining several aspects of the proof of this result.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Guedj, V. (2013). Convergence of the Kähler–Ricci Flow on a Kähler–Einstein Fano Manifold. In: Boucksom, S., Eyssidieux, P., Guedj, V. (eds) An Introduction to the Kähler-Ricci Flow. Lecture Notes in Mathematics, vol 2086. Springer, Cham. https://doi.org/10.1007/978-3-319-00819-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-00819-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-00818-9
Online ISBN: 978-3-319-00819-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)