On the Transparency of Defeasible Logics: Equivalent Premise Sets, Equivalence of Their Extensions, and Maximality of the Lower Limit

Chapter
Part of the Trends in Logic book series (TREN, volume 38)

Abstract

For Tarski logics, there are simple criteria that enable one to conclude that two premise sets are equivalent. We shall show that the very same criteria hold for adaptive logics, which is a major advantage in comparison to other approaches to defeasible reasoning forms. A related property of Tarski logics is that the extensions of equivalent premise sets with the same set of formulas are equivalent premise sets. This does not hold for adaptive logics. However a very similar criterion does. We also shall show that every monotonic logic weaker than an adaptive logic is weaker than the lower limit logic of the adaptive logic or identical to it. This highlights the role of the lower limit for settling the adaptive equivalence of extensions of equivalent premise sets.

References

  1. 1.
    Batens, D., Straßer, C., Verdée, P.: On the transparency of defeasible logics: equivalent premise sets, equivalence of their extensions, and maximality of the lower limit. Logique et Analyse 52(207), 281–304 (2009)Google Scholar
  2. 2.
    Shoham, Y.: A semantical approach to nonmonotonic logics. In: Ginsberg, M.L. (ed.) Readings in Non-Monotonic Reasoning, pp. 227–249. Morgan Kaufmann, Los Altos (1987)Google Scholar
  3. 3.
    Shoham, A.L.B.Y. Jr.: New results on semantical non-monotonic reasoning. In: Reinfrank, M., de Kleer, J., Ginsberg, M.L., Sandewall, E. (eds.) NMR. Lecture Notes in Computer Science, vol. 346, pp. 19–26. Springer (1988)Google Scholar
  4. 4.
    Lin, F., Shoham, Y.: Epistemic semantics for fixed-points non-monotonic logics. Morgan Kaufmann Publishers Inc., Pacific Grove, CA (1990)Google Scholar
  5. 5.
    Batens, D.: Towards the unification of inconsistency handling mechanisms. Logic Log. Philos. 8, 5–31 (2000). Appeared 2002Google Scholar
  6. 6.
    Batens, D.: A strengthening of the Rescher-Manor consequence relations. Logique et Analyse 183184, 289–313 (2003). Appeared 2005Google Scholar
  7. 7.
    Batens, D., Vermeir, T.: Direct dynamic proofs for the Rescher-Manor consequence relations: the flat case. J. Appl. Non-Class. Logics 12, 63–84 (2002)CrossRefGoogle Scholar
  8. 8.
    Verhoeven, L.: Proof theories for some prioritized consequence relations. Logique et Analyse 183184, 325–344 (2003). Appeared 2005Google Scholar
  9. 9.
    Rescher, N., Manor, R.: On inference from inconsistent premises. Theor. Decis. 1, 179–217 (1970)CrossRefGoogle Scholar
  10. 10.
    Benferhat, S., Dubois, D., Prade, H.: Some syntactic approaches to the handling of inconsistent knowledge bases: a comparative study. Part 1: the flat case. Stud. Logica 58, 17–45 (1997)CrossRefGoogle Scholar
  11. 11.
    Benferhat, S., Dubois, D., Prade, H.: Some syntactic approaches to the handling of inconsistent knowledge bases: a comparative study. Part 2: The prioritized case. In: Orłowska, E. (ed) Logic at Work. Essays Dedicated to the Memory of Helena Rasiowa, pp. 473–511. Physica Verlag (Springer), Heidelberg (1999)Google Scholar
  12. 12.
    Batens, D., Meheus, J., Provijn, D.: An adaptive characterization of signed systems for paraconsistent reasoning (Unpublished).Google Scholar
  13. 13.
    Besnard, P., Schaub, T.: Signed systems for paraconsistent reasoning. J. Autom. Reason. 20, 191–213 (1998)CrossRefGoogle Scholar
  14. 14.
    De Clercq, K.: Two new strategies for inconsistency-adaptive logics. Logic Log. Philos. 8, 65–80 (2000). Appeared 2002Google Scholar
  15. 15.
    Batens, D.: Inconsistency-adaptive logics and the foundation of non-monotonic logics. Logique et Analyse 145, 57–94 (1994). Appeared 1996Google Scholar
  16. 16.
    Antoniou, G.: Nonmonotonic Reasoning. MIT Press, Cambridge (1996)Google Scholar
  17. 17.
    Brewka, G.: Nonmonotonic Reasoning: Logical Foundations of Commonsense. Cambridge University Press, Cambridge (1991)Google Scholar
  18. 18.
    Łukaszewicz, W.: Non-Monotonic Reasoning. Formalization of Commonsense Reasoning. Ellis Horwood, New York (1990)Google Scholar
  19. 19.
    Straßer, C.: An adaptive logic for rational closure. In: Carnielli, W., Coniglio, M.E., D’Ottaviano, I.M.L. (eds.) The Many Sides of Logic, pp. 47–67. College Publications (2009)Google Scholar
  20. 20.
    Lehmann, D.J., Magidor, M.: What does a conditional knowledge base entail? Artif. Intell. 55(1), 1–60 (1992)CrossRefGoogle Scholar
  21. 21.
    Straßer, C., Šešelja, D.: Towards the proof-theoretic unification of Dung’s argumentation framework: an adaptive logic approach. J. Logic Comput. 21, 133–156 (2010)CrossRefGoogle Scholar
  22. 22.
    Dung, P.M., Son, T.C.: Nonmonotonic inheritance, argumentation and logic programming. In: Marek, V.W., Nerode, A. (eds.) Logic Programming and Nonmonotonic Reasoning, Proceedings. Lecture Notes in Computer Science. Third International Conference, LPNMR’95, Lexington, USA, June 26–28, 1995, vol. 928, pp. 316–329. Springer (1995)Google Scholar
  23. 23.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–358 (1995)Google Scholar
  24. 24.
    Primiero, G., Meheus, J.: Majority merging by adaptive counting. Synthese 165, 203–223 (2008)CrossRefGoogle Scholar
  25. 25.
    Konieczny, S., Pino Pérez, R.: Merging information under constraints: a logical framework. J. Logic Comput. 12, 773–808 (2002)Google Scholar
  26. 26.
    Meheus, J.: Adaptive logics for question evocation. Logique et Analyse 173175, 135–164 (2001). Appeared 2003Google Scholar
  27. 27.
    Meheus, J.: Erotetic arguments from inconsistent premises. Logique et Analyse 165166, 49–80 (1999). Appeared 2002Google Scholar
  28. 28.
    Wiśniewski, A.: The Posing of Questions. Logical Foundations of Erotetic Inferences. Kluwer, Dordrecht (1995)CrossRefGoogle Scholar
  29. 29.
    Meheus, J., Verhoeven, L., Van Dyck, M., Provijn, D.: Ampliative adaptive logics and the foundation of logic-based approaches to abduction. In: Magnani, L., Nersessian, N.J., Pizzi, C., et al (eds.) Logical and Computational Aspects of Model-Based Reasoning, pp. 39–71. Kluwer, Dordrecht (2002)Google Scholar
  30. 30.
    Meheus, J., Provijn, D.: Abduction through semantic tableaux versus abduction through goal-directed proofs. Theoria 22/3, 295–304 (2007)Google Scholar
  31. 31.
    Meheus, J., Batens, D.: A formal logic for abductive reasoning. Logic J. IGPL 14, 221–236 (2006)CrossRefGoogle Scholar
  32. 32.
    Gauderis, T., Putte, F.V.D.: Abduction of generalizations. THEORIA Int. J. Theor. Hist. Found. Sci. 27(3), (2012)Google Scholar
  33. 33.
    Gauderis, T.: Modelling abduction in science by means of a modal adaptive logic. Found. Sci. (2013)Google Scholar
  34. 34.
    Aliseda, A.: Abductive Reasoning. Logical Investigations into Discovery and Explanation. Springer, Dordrecht (2006)Google Scholar
  35. 35.
    Provijn, D., Weber, E.: Adaptive logics for non-explanatory and explanatory diagnostic reasoning. In: Magnani, L., Nersessian, N.J., Pizzi, C., et al (eds.) Logical and Computational Aspects of Model-Based Reasoning, pp. 117–142. Kluwer, Dordrecht (2002)Google Scholar
  36. 36.
    Batens, D., Meheus, J., Provijn, D., Verhoeven, L.: Some adaptive logics for diagnosis. Logic Log. Philos. 11/12, 39–65 (2003)Google Scholar
  37. 37.
    Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32, 57–95 (1987)CrossRefGoogle Scholar
  38. 38.
    Meheus, J.: Empirical progress and ampliative adaptive logics. In: Festa, R., Aliseda, A., Peijnenburg, J. (eds.) Confirmation, Empirical Progress, and Truth Approximation. Essays in Debate with Theo Kuipers. vol. 1, Poznan Studies in the Philosophy of the Sciences and the Humanities, vol. 83, pp. 193–217. Rodopi, Amsterdam/New York (2005)Google Scholar
  39. 39.
    Kuipers, T.A.F.: From Instrumentalism to Constructive Realism. On some Relations Between Confirmation, Empirical Progress, and Truth Approximation, Synthese Library, vol. 287. Kluwer, Dordrecht (2000)Google Scholar
  40. 40.
    Van De Putte, F., Verdée, P.: The dynamics of relevance: adaptive belief revision. Synthese 187(1), 1–42 (2012)CrossRefGoogle Scholar
  41. 41.
    Meheus, J.: An adaptive logic for pragmatic truth. In: Carnielli, W.A., Coniglio, M.E., Loffredo D’Ottaviano, I.M. (eds.) Paraconsistency. The Logical Way to the Inconsistent, pp. 167–185. Marcel Dekker, New York (2002)Google Scholar
  42. 42.
    Mikenberg, I., da Costa, N.C.A., Chuaqui, R.: Pragmatic truth and approximation to truth. J. Symb. Logic 51, 201–221 (1986)CrossRefGoogle Scholar
  43. 43.
    da Costa, N.C., Bueno, O., French, S.: The logic of pragmatic truth. J. Philos. Logic 27, 603–620 (1998)CrossRefGoogle Scholar
  44. 44.
    Van Dyck, M.: Causal discovery using adaptive logics. Towards a more realistic heuristics for human causal learning. Logique et Analyse 185188, 5–32 (2004). Appeared 2005Google Scholar
  45. 45.
    Leuridan, B.: Causal discovery and the problem of ignorance. An adaptive logic approach. J. Appl. Logic 7, 188–205 (2009)CrossRefGoogle Scholar
  46. 46.
    Pearl, J.: Causality. Models, Reasoning, and Inference. Cambridge University Press, Cambridge (2000)Google Scholar
  47. 47.
    Straßer, C.: An adaptive logic framework for conditional obligations and deontic dilemmas. Logic Log. Philos. 19(1–2), 95–128 (2010)Google Scholar
  48. 48.
    Straßer, C., Meheus, J., Beirlaen, M.: Tolerating deontic conflicts by adaptively restricting inheritance. Logique Anal. 219, 477–506 (2012)Google Scholar
  49. 49.
    Goble, L.: A proposal for dealing with deontic dilemmas. In: Lomuscio, A., Nute, D. (eds.) DEON Lecture Notes in Computer Science, vol. 3065, pp. 74–113. Springer (2004)Google Scholar
  50. 50.
    Goble, L.: A logic for deontic dilemmas. J. Appl. Logic 3, 461–483 (2005)CrossRefGoogle Scholar
  51. 51.
    Verdée, P., van der Waart van Gulik, S.: A generic framework for adaptive vague logics. Studia Logica 90, 385–405 (2008)Google Scholar
  52. 52.
    Schotch, P.K., Jennings, R.E.: On detonating. In: Priest, G., Routley, R., Norman, J. (eds.) Paraconsistent Logic. Essays on the Inconsistent, pp. 306–327. Philosophia Verlag, München (1989)Google Scholar
  53. 53.
    Makinson, D.: Bridges from Classical to Nonmonotonic Logic, Texts in Computing, vol. 5. King’s College Publications, London (2005)Google Scholar
  54. 54.
    Hughes, G., Cresswell, M.: An Introduction to Modal Logic. Methuen, New York (1972). First published 1968Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.GhentBelgium

Personalised recommendations