Skip to main content

Electrohydrodynamic Lithography of a Conducting Polymer

  • Chapter
  • First Online:
Electrohydrodynamic Patterning of Functional Materials

Part of the book series: Springer Theses ((Springer Theses))

  • 607 Accesses

Abstract

An increasing number of technologies require the fabrication of conductive micro and nanostructures over large areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pease, L. F., & Russel, W. B. (2006). Charge driven, electrohydrodynamic patterning of thin films. Journal of Chemical Physics, 125(18), 184716-1–184716-6

    Google Scholar 

  2. Pease, L. F., & Russel, W. B. (2003). Electrostatically induced submicron patterning of thin perfect and leaky dielectric films: A generalized linear stability analysis. Journal of Chemical Physics, 118(8), 3790–3803.

    Google Scholar 

  3. Pease, L. F., Russel, W. B. (2002). Linear stability analysis of thin leaky dielectric films subjected to electric fields. Journal of Non-Newtonian Fluid Mechanics, 102(2), 233–250, Sp. SI: Iss.

    Google Scholar 

  4. Katz, H. E. (2004). Chemically sensitive field-effect transistors and chemiresistors: New materials and device structures. Electroanalysis, 16(22), 1837–1842.

    Article  CAS  Google Scholar 

  5. Wang, J. Z., Zheng, Z. H., Li, H. W., Huck, W. T. S., & Sirringhaus, H. (2004). Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nature Materials, 3(3), 171–176.

    Article  Google Scholar 

  6. Katz, E., Willner, I., & Wang, J. (2004). Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis, 16(1–2), 19–44.

    Article  CAS  Google Scholar 

  7. Sonmez, G., Sonmez, H. B., Shen, C. K. F., & Wudl, F. (2004). Red, green, and blue colors in polymeric electrochromics. Advanced Materials, 16(21), 1905–1908.

    Article  CAS  Google Scholar 

  8. Dong, B., Zhong, D. Y., Chi, L. F., & Fuchs, H. (2005). Patterning of conducting polymers based on a random copolymer strategy: toward the facile fabrication of nanosensors exclusively based on polymers. Advanced Materials, 17(22), 2736–2741.

    Article  CAS  Google Scholar 

  9. Drury, C. J., Mutsaers, C. M. J., Hart, C. M., Matters, M., & de Leeuw, d M. (1998). Low-cost all-polymer integrated circuits. Applied Physics Letters, 73(1), 108–110.

    Article  CAS  Google Scholar 

  10. Parashkov, R., Becker, E., Riedl, T., Johannes, H.-H., & Kowalsky, W. (2005). Microcontact printing as a versatile tool for patterning organic field-effect transistors. Advanced Materials, 17(12), 1523–1527.

    Article  CAS  Google Scholar 

  11. Ramanathan, K., Bangar, M. A., Yun, M., Chen, W., Mulchandani, A., & Myung, N. V. (2004). Individually addressable conducting polymer nanowires array. Nano Letters, 4(7), 1237–1239.

    Article  CAS  Google Scholar 

  12. Lowe, J., & Holdcroft, S. (1995). Synthesis and photolithography of polymers and copolymers based on poly(3-(2-(methacryloyloxy)ethyl)thiophene). Macromolecules, 28(13), 4608–4616.

    Article  CAS  Google Scholar 

  13. Schanze, K. S., Bergstedt, T. S., & Hauser, B. T. (1996). Photolithographic patterning of electroactive polymer films and electrochemically modulated optical diffraction gratings. Advanced Materials, 8(6), 531–534.

    Article  CAS  Google Scholar 

  14. Granlund, T., Nyberg, T., Stolz Roman, L., Svensson, M., & Inganaes, O. (2000). Patterning of polymer light-emitting diodes with soft lithography. Advanced Materials, 12(4), 269–273.

    Article  CAS  Google Scholar 

  15. Goldberg-Oppenheimer, P., & Steiner, U. (2010). Rapid electrohydrodynamic lithography using low viscosity resists. Small, 6, 1248–1254.

    Article  CAS  Google Scholar 

  16. Schaffer, E. (2001). Instabilities in thin polymer films: structure formation and pattern transfer. Ph.D. Thesis, http://www.ub.uni-konstanz.de/kops/volltexte/2002/779/

  17. Schaffer, E., Thurn-Albrecht, T., Russell, T. P., & Steiner, U. (2001). Electrohydrodynamic instabilities in polymer films. Europhysics Letters, 53(4), 518–524.

    Article  CAS  Google Scholar 

  18. Schaffer, E., Thurn-Albrecht, T., Russell, T. P., & Steiner, U. (2000). Electrically induced structure formation and pattern transfer. Nature, 403(6772), 874–877.

    Article  CAS  Google Scholar 

  19. Kyunggi, Y.S., Eung, O.J., Kwan, J.S. (2002). Method for making polypyrrole. Patent WO 02/10251.

    Google Scholar 

  20. Vrij, A. (1966). Discuss. Faraday Society, 42, 23.

    Article  Google Scholar 

  21. Wu, N., & Russel, W. B. (2009). Micro- and nano-patterns created via electrohydrodynamic instabilities. Nano Today, 4(2), 180–192.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pola Goldberg Oppenheimer .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oppenheimer, P.G. (2013). Electrohydrodynamic Lithography of a Conducting Polymer. In: Electrohydrodynamic Patterning of Functional Materials. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00783-0_8

Download citation

Publish with us

Policies and ethics