Skip to main content

Flexible Terahertz Metamaterials for Frequency Selective Surfaces

  • Conference paper
  • First Online:
MEMS and Nanotechnology, Volume 5

Abstract

While recent years have seen great advances in the generation, detection, and application of terahertz frequency radiation, this region of the electromagnetic spectrum still suffers from a lack of efficient and effective frequency specific optical components. While such terahertz devices do exist, they are often limited by the materials they are based on and a lack of frequency selectivity and tunability. Metamaterial devices can provide frequency resonant behavior in the form of transmissive and reflective filters. Such a frequency selective surface can also be made tunable via the use of a flexible substrate. In this talk, we will highlight work involving the design, fabrication, and characterization of terahertz metamaterial devices based on flexible substrates. Finite element method simulations have been utilized to design a split-ring resonator (SRR) structure on a flexible SU8 polymer substrate with a targeted 250 GHz resonant response. Multiple configurations of SRR arrays have been fabricated on free standing SU8 substrates. These devices have subsequently been characterized using terahertz time-domain spectroscopy and imaging systems. The metamaterial devices have shown selective transmission and reflection over a narrow range of frequencies near the targeted resonance at 250 GHz. Details of both the design, fabrication, and characterization will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mittleman DM (2002) Sensing with terahertz radiation. In: Book sensing with terahertz radiation, Springer-Verlag, New York, NY, USA

    Google Scholar 

  2. Allen J, Jones B, Martin M, Taylor T, Allen M, Smith T, Nelson K, Mittleman D, Williams G, Norris T, Crowe T, Parks B, Hu Q, Kono J, Sherwin MA, Carr L, Bucksbaum PH, Zhang XC, Leemans W, Biedron S, Heyman J, Basov D, Orenstein J, Rangan C, Siegel P, Averitt R, Austin B, Tom H, Brunel L, Unterrainer K, Mihaly L, Zimdars D, Wilke I, Van der Meer L, Heinz T, Shan J, Jepsen P, Schmuttenmaer CA, Chamberlain M, DeLucia F, Noordham B, Cheville A, Markelz A, Plancken P, Citrin D, Grundfest W, Heilweil T, Kaind R, Wallace V (2004) DOE-NSF-NIH workshop on opportunities in THz science. In: Book DOE-NSF-NIH workshop on opportunities in THz science. Dept of Energy; Office of Science, 12–14 Feb 2004

    Google Scholar 

  3. Ferguson B, Zhang XC (2002) Materials for terahertz science and technology. Nat Mater 1(1):26–33

    Article  Google Scholar 

  4. Siegel PH (2002) Terahertz technology. IEEE Trans Microw Theory Tech 50(3):910–928

    Article  Google Scholar 

  5. Grischkowsky D, Keiding SR, Exter M, Fattinger C (1990) Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J Opt Soc Am B 7(10):2006–2015

    Article  Google Scholar 

  6. Kawase K, Ogawa Y, Watanabe Y (2003) Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt Express 11(20):2549–2554

    Article  Google Scholar 

  7. Mittleman DM, Cunningham J, Neelamani R, Geva M (1997) Non-contact semiconductor wafer characterization with the terahertz hall effect. Appl Phys Lett 71:16–18

    Article  Google Scholar 

  8. Zimdars D, White J, Stuk G, Chernovsky A, Fichter G, Williamson SL (2006) Large area terahertz imaging and non-destructive evaluation applications. Insight Non-Destruct Test Cond Monit 48(9):537–539

    Article  Google Scholar 

  9. Crowe TW, Porterfield DW, Hesler JL, Bishop WL, Kurtz DS, Hui K (2005) Terahertz sources and detectors. In: Hwu RJ, Woolard DL, Rosker MJ (eds) Terahertz for military and security applications Iii. Spie-Int Soc Optical Engineering, Grenoble, France, pp 271–280

    Google Scholar 

  10. Lee AWM, Hu Q (2005) Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array. Opt Lett 30(19):2563–2565

    Article  Google Scholar 

  11. Saeedkia D, Safavi-Naeini S (2008) Terahertz photonics: optoelectronic techniques for generation and detection of terahertz waves. J Lightwave Technol 26(13–16):2409–2423

    Article  Google Scholar 

  12. Belkin MA, Wang QJ, Pflugl C, Belyanin A, Khanna SP, Davies AG, Linfield EH, Capasso F (2009) High-temperature operation of terahertz quantum cascade laser sources. IEEE J Sel Top Quantum Electron 15(3):952–967

    Article  Google Scholar 

  13. Neu J, Krolla B, Paul O, Reinhard B, Beigang R, Rahm M (2010) Metamaterial-based gradient index lens with strong focusing in the THz frequency range. Opt Express 18(26):27748–27757

    Article  Google Scholar 

  14. Peralta XG, Smirnova EI, Azad AK, Chen H-T, Taylor AJ, Brener I, O’Hara JF (2009) Metamaterials for THz polarimetric devices. Opt Express 17(2):773–783

    Article  Google Scholar 

  15. Peralta XG, Wanke MC, Brener I, Waldman J, Goodhue WD, Lic J, Azad AK, Chen HT, Taylor AJ, O’Hara JF (2010) Metamaterial based devices for terahertz imaging. In: Jansen ED, Thomas RJ (eds) Optical interactions with tissues and cells Xxi. Spie-Int Soc Optical Engineering, San Francisco, CA, USA

    Google Scholar 

  16. Azad AK, Chen HT, Lu X, Gu J, Weiss-Bernstein NR, Akhadov E, Taylor AJ, Zhang W, O’Hara JF (2009) Flexible quasi-three-dimensional terahertz electric metamaterials. Terahertz Sci Technol 2(1):15–22

    Google Scholar 

  17. Hu T et al (2008) Terahertz metamaterials on free-standing highly-flexible polyimide substrates. J Phys D: Appl Phys 41(23):232004

    Article  Google Scholar 

  18. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech 47(11):2075–2084

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Coutu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Society for Experimental Mechanics

About this paper

Cite this paper

Deibel, J.A. et al. (2014). Flexible Terahertz Metamaterials for Frequency Selective Surfaces. In: Shaw III, G., Prorok, B., Starman, L., Furlong, C. (eds) MEMS and Nanotechnology, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-00780-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00780-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00779-3

  • Online ISBN: 978-3-319-00780-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics