Biomechanical Response of Blast Loading to the Head Using 2D-3D Cineradiographic Registration

  • R. S. Armiger
  • Y. Otake
  • A. S. Iwaskiw
  • A. C. Wickwire
  • K. A. Ott
  • L. M. Voo
  • M. Armand
  • A. C. Merkle
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

This paper details a method for tracking 3D kinematics of the skull and brain deformation in post-mortem human subjects (PMHS) using 2D cineradiographic images during a high-rate loading event. Brain displacement and resulting strain due to blast loading is a metric for Traumatic Brain Injury (TBI), however physically measuring brain motion experimentally is a significant challenge. A shock tube, used to simulate blast exposure, created skull and brain motion tracked using implanted radio-opaque markers and high-speed X-ray images. These images were registered to a computed tomography (CT) scan using intensity-based 2D-3D registration techniques. To register the 2D images to the 3D scan, digitally reconstructed radiographs were generated from the CT scan, and then compared to the recorded x-ray frames by maximizing similarity metrics between the images using a Covariance Matrix Adaptation Evolution Strategy. As compared to pure 2D tracking, 2D-3D registration provides out-of-plane kinematics by fully leveraging information in the x-ray projection image and prior information from the 3D CT scan. Data generated with these techniques are critical for physically understanding the mechanisms associated with blast exposure that may lead to TBI, and can be used for human computational model validation.

Keywords

Image registration Traumatic brain injury Blast loading High-speed x-ray Head kinematics 

References

  1. 1.
    DoD worldwide numbers for TBI [Internet]. Available from: http://www.dvbic.org/dod-worldwide-numbers-tbi
  2. 2.
    Ravin R, Blank PS, Steinkamp A, Rappaport SM, Ravin N, Bezrukov L et al (2012) Shear forces during blast, not abrupt changes in pressure alone, generate calcium activity in human brain cells. PLoS One 7(6):e39421CrossRefGoogle Scholar
  3. 3.
    Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP (1982) Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 12(6):564–574CrossRefGoogle Scholar
  4. 4.
    Gennarelli TA (1993) Mechanisms of brain injury. J Emerg Med 11(Suppl 1):5–11Google Scholar
  5. 5.
    Merkle AC, Wing ID, Carneal CM (2012) Effect of helmet systems on the two-phased brain response to blast loading. Personal armour systems symposium. NurembergGoogle Scholar
  6. 6.
    Roberts JC, Harrigan TP, Ward EE, Taylor TM, Annett MS, Merkle AC (2012) Human head-neck computational model for assessing blast injury. J Biomech 45(16):2899–2906CrossRefGoogle Scholar
  7. 7.
    Ott KA, Armiger R, Wickwire A, Iwaskiw A, Merkle AC (2013) Determination of simple shear material properties of the brain at high strain rates. Dyn Behav Mater 1:139–147CrossRefGoogle Scholar
  8. 8.
    Saraf H, Ramesh KT, Lennon AM, Merkle AC, Roberts JC (2007) Mechanical properties of soft human tissues under dynamic loading. J Biomech 40(9):1960–1967CrossRefGoogle Scholar
  9. 9.
    Trexler MM, Lennon AM, Wickwire AC, Harrigan TP, Luong QT, Graham JL et al (2011) Verification and implementation of a modified split hopkinson pressure bar technique for characterizing biological tissue and soft biosimulant materials under dynamic shear loading. J Mech Behav Biomed Mater 4(8):1920–1928CrossRefGoogle Scholar
  10. 10.
    Merkle AC, Wing ID, Carneal CM (2012) The mechanics of brain motion during free-field blast loading. In: ASME summer bioengineering conference, FajardoGoogle Scholar
  11. 11.
    Hardy WN, Foster CD, Mason MJ, Yang KH, King AI, Tashman S (2001) Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J 45:337–368Google Scholar
  12. 12.
    Bir C, Bolander R, Leonardi A, Ritzel D, VandeVord P, Dingell JD (2011) A biomechanical prospective of blast injury neurotrauma. RTO-MP-HFM-207 – a survey of blast injury across the full landscape of military science, HalifaxGoogle Scholar
  13. 13.
    Sundararajan S, Prasad P, Demetropoulos CK, Tashman S, Begeman PC, Yang KH et al (2004) Effect of head-neck position on cervical facet stretch of post mortem human subjects during low speed rear end impacts. Stapp Car Crash J 48:331–372Google Scholar
  14. 14.
    Otake Y, Armand M, Armiger RS, Kutzer MD, Basafa E, Kazanzides P et al (2012) Intraoperative image-based multiview 2D/3D registration for image-guided orthopaedic surgery: incorporation of fiducial-based C-arm tracking and GPU-acceleration. IEEE Trans Med Imaging 31(4):948–962CrossRefGoogle Scholar
  15. 15.
    Cernak I, Merkle AC, Koliatsos VE, Bilik JM, Luong QT, Mahota TM et al (2011) The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice. Neurobiol Dis 41(2):538–551CrossRefGoogle Scholar
  16. 16.
    Chintalapani G, Jain AK, Taylor RH (2007) Statistical characterization of C-arm distortion with application to intra-operative distortion correction. In: Proceedings of SPIE 6509, medical imaging 2007: visualization and image-guided procedures, San Diego, CA, USAGoogle Scholar
  17. 17.
    Pluim JP, Maintz JB, Viergever MA (2000) Image registration by maximization of combined mutual information and gradient information. IEEE Trans Med Imaging 19(8):809–814CrossRefGoogle Scholar
  18. 18.
    Hansen N (2006) Towards a new evolutionary computation. In: Lozano JA, Larrañaga P, Inza I, Bengoetxea E (eds), Advances on Estimation of Distribution Algorithms, chapter the CMA evolution strategy: Studies in Fuzziness and Soft Computing, Vol. 192, XV, 294 pGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2014

Authors and Affiliations

  • R. S. Armiger
    • 1
  • Y. Otake
    • 1
  • A. S. Iwaskiw
    • 1
  • A. C. Wickwire
    • 1
  • K. A. Ott
    • 1
  • L. M. Voo
    • 1
  • M. Armand
    • 1
  • A. C. Merkle
    • 1
  1. 1.The Johns Hopkins University Applied Physics LaboratoryLaurelUSA

Personalised recommendations