Skip to main content

Application to Life Sciences

  • Chapter
  • First Online:
Tackling the Inverse Problem for Non-Autonomous Systems

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The proposed theory and methods are applied for the analysis of biological oscillatory systems affected by external dynamical influences. The main investigation is performed on physiological measurements under conditions where the breathing frequency is varied linearly, thus introducing a deterministic non-autonomous timevariation into the oscillatory system. Methods able to track time-varying characteristics are applied to signals from the cardiovascular, and the sympathetic neural systems. The time-varying breathing process significantly affected the functioning and regulation of several physiological mechanisms, demonstrating a clear imprint of the particular form of externally induced time-variation. Specifically, low frequencies of breathing provoked more information flow, interfering with the coordination and increasing the coupling strength between the oscillatory processes. Statistical analyses are performed to identify significant relationships, and the proposed inferential method is applied. The technique demonstrates that cardiorespiratory coordination depends on, and to a large extent is regulated by, respiratory dynamics. Time-varying respiration caused synchronization transitions between different orders. An additional complexity is that the coupling functions are also identified as being time-varying processes. A technique based on the synchrosqueezed wavelet transform shows how the instantaneous phase can be extracted from complex mixed-mode signals with timevarying characteristics. The latter procedure is demonstrated on several physiological signals of this kind. A dynamical characterization for the reproducibility of blood flow is shown to be more appropriate than conventional time-averaged analysis. This also implies that care must be taken when external perturbations are made consecutively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that instantaneous or ‘every instant of time’ in this context is finite and defined by the sampling frequency of the time-series.

References

  1. E.N. Marieb, Human Anatomy and Physiology, 7th edn. (Benjamin Cummings, San Francisco, 2007)

    Google Scholar 

  2. B. Charlie, Nervous System (Mosby, Edinburgh, 2003)

    Google Scholar 

  3. Y. Shiogai, A. Stefanovska, P.V.E. McClintock, Nonlinear dynamics of cardiovascular ageing. Phys. Rep. 488, 51–110 (2010)

    Article  ADS  Google Scholar 

  4. A. Stefanovska, M. Bračič, Physics of the human cardiovascular system. Contemp. Phys. 40, 31–55 (1999)

    Article  ADS  Google Scholar 

  5. A. Stefanovska, M. Bračič, H.D. Kvernmo, Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans. Bio. Med. Eng. 46(10), 1230–1239 (1999)

    Article  Google Scholar 

  6. J.A. Hirsch, B. Bishop, Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am. J. Physiol. Heart Circul. Physiol. 241(4), H620–H629 (1981)

    Google Scholar 

  7. T.E. Brown, L.A. Beightol, J. Koh, D.L. Eckberg, Important influence of respiration on human R-R interval power spectra is largely ignored. J. Appl. Physiol. 75(5), 2310–2317 (1993)

    Google Scholar 

  8. L.J. Badra, W.H. Cooke, J.B. Hoag, A.A. Crossman, T.A. Kuusela, K.U.O. Tahvanainen, D.L. Eckberg, Respiratory modulation of human autonomic rhythms. Am. J. Physiol. Heart Circul. Physiol. 280(6), H2674–H2688 (2001)

    Google Scholar 

  9. M.B. Lotrič, A. Stefanovska, Synchronization and modulation in the human cardiorespiratory system. Physica A 283(3–4), 451–461 (2000)

    Article  ADS  Google Scholar 

  10. V.G. Macefield, B.G. Wallin, Modulation of muscle sympathetic activity during spontaneous and artificial ventilation and apnoea in humans. J. Auton. Nerv. Syst. 53(23), 137–147 (1995)

    Article  Google Scholar 

  11. D.L. Eckberg, The human respiratory gate. J. Physiol. 548(2), 339–352 (2003)

    Google Scholar 

  12. D.R. Seals, N.O. Suwarno, J.A. Dempsey, Influence of lung volume on sympathetic nerve discharge in normal humans. Circ. Res. 67(1), 130–141 (1990)

    Article  Google Scholar 

  13. P. Van De Borne, N. Montano, K. Narkiewicz, J.P. Degaute, A. Malliani, M. Pagani, V.K. Somers, Importance of ventilation in modulating interaction between sympathetic drive and cardiovascular variability. Am. J. Physiol. Heart Circul. Physiol. 280(2), H722–H729 (2001)

    Google Scholar 

  14. A. Bernjak, J. Cui, S. Iwase, T. Mano, A. Stefanovska, D.L. Eckberg, Human sympathetic outflows to skin and muscle target organs fluctuate concordantly over a wide range of time-varying frequencies. J. Physiol. 590, 363–375 (2011)

    Google Scholar 

  15. T. Soderstrom, A. Stefanovska, M. Veber, H. Svensson, Involvement of sympathetic nerve activity in skin blood flow oscillations in humans. Am. J. Physiol. Heart Circul. Physiol. 284(5), H1638–H1646 (2003)

    Google Scholar 

  16. J.P. Saul, R.D. Berger, P. Albrecht, S.P. Stein, M.H. Chen, R.J. Cohen, Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am. J. Physiol. Heart Circul. Physiol. 261(4), H1231–H1245 (1991)

    Google Scholar 

  17. A. Stefanovska, L.W. Sheppard, T. Stankovski, P.V.E. McClintock, Reproducibility of LDF blood flow measurements: dynamical characterization versus averaging. Microvasc. Res. 82(3), 274–276 (2011)

    Article  Google Scholar 

  18. G. Kaiser, A Friendly Guide to Wavelets (Birkhäuser, Boston, 1994)

    MATH  Google Scholar 

  19. A. Bandrivskyy, A. Bernjak, P. McClintock, A. Stefanovska, Wavelet phase coherence analysis: application to skin temperature and blood flow. Cardiovasc. Eng. 4(1), 89–93 (2004)

    Article  Google Scholar 

  20. L.W. Sheppard, A. Stefanovska, P.V.E. McClintock, Testing for time-localized coherence in bivariate data. Phys. Rev. E 85, 046205 (2012)

    Article  ADS  Google Scholar 

  21. M. Paluš, A. Stefanovska, Direction of coupling from phases of interacting oscillators: an information-theoretic approach. Phys. Rev. E 67, 055201 (2003)

    Article  ADS  Google Scholar 

  22. B. Musizza, A. Stefanovska, P.V.E. McClintock et al., Interactions between cardiac, respiratory and EEG-oscillations in rats during anaesthesia. J. Physiol. 580(1), 315–326 (2007)

    Article  Google Scholar 

  23. A. Porta, A.M. Catai, A.C.M. Takahashi, V. Magagnin, T. Bassani, E. Tobaldini, P. van de Borne, N. Montano, Causal relationships between heart period and systolic arterial pressure during graded head-up tilt. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 300(2), R378–R386 (2011)

    Article  Google Scholar 

  24. K. Lehnertz, Assessing directed interactions from neurophysiological signals—an overview. Physiol. Measur. 32(11), 1715–1724 (2011)

    Article  ADS  Google Scholar 

  25. T. Schreiber, A. Schmitz, Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77(4), 635–638 (1996)

    Article  ADS  Google Scholar 

  26. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, J.D. Farmer, Testing for nonlinearity in time series: the method of surrogate data. Physica D 58(1–4), 77–94 (1992)

    Google Scholar 

  27. C. Schäfer, M.G. Rosenblum, J. Kurths, H.H. Abel, Heartbeat synchronised with ventilation. Nature 392(6673), 239–240 (1998)

    Article  ADS  Google Scholar 

  28. A. Bahraminasab, F. Ghasemi, A. Stefanovska, P.V.E. McClintock, H. Kantz, Direction of coupling from phases of interacting oscillators: a permutation information approach. Phys. Rev. Lett. 100, 084101 (2008)

    Article  ADS  Google Scholar 

  29. S.M. Barman, Sympathetic nerve activity has more character than you may think. J. Physiol. 587(20), 4767–4768 (2009)

    Article  Google Scholar 

  30. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization—A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  31. D. Gabor, Theory of communication. J. IEEE 93, 429–457 (1946)

    Google Scholar 

  32. M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Synchronization approach to analysis of biological systems. Fluctuat. Noise Lett. 4(1), 53 (2004)

    Article  Google Scholar 

  33. T. Stankovski, B. Musizza, P.V.E. McClintock, A. Stefanovska, Phase detection from the respiration signal, in Proceedings of the 6th ESGCO, Berlin, Germany, 2010

    Google Scholar 

  34. A. Stefanovska, P.V.E. McClintock, J. Ræder, A.F. Smith, Nonlinear Dynamics of Anæsthesia: from Theory to Clinical Application (Springer, Berlin, to be published)

    Google Scholar 

  35. I. Daubechies, J. Lu, H.-T. Wu, Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30(2), 243–261 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Wu, Instantaneous frequency and wave shape functions. arXiv:1104.2365v1, 2011

    Google Scholar 

  37. E. Brevdo, N.S. Fuckar, G. Thakur, H. Wu, The synchrosqueezing algorithm: a robust analysis tool for signals with time-varying spectrum. arXiv:1105.0010v1, 2011

    Google Scholar 

  38. B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky, R. Mrowka, Uncovering interaction of coupled oscillators from data. Phys. Rev. E 76, 055201 (2007)

    Article  ADS  Google Scholar 

  39. M.G. Rosenblum, A.S. Pikovsky, Detecting direction of coupling in interacting oscillators. Phys. Rev. E. 64, 045202 (2001)

    Article  ADS  Google Scholar 

  40. J. Jamšek, M. Paluš, A. Stefanovska, Detecting couplings between interacting oscillators with time-varying basic frequencies: instantaneous wavelet bispectrum and information theoretic approach. Phys. Rev. E 81, 036207 (2010)

    Article  ADS  Google Scholar 

  41. D. Iatsenko, A. Bernjak1, T. Stankovski, Y. Shiogai, P.J. Owen-Lynch, P.B.M. Clarkson, P.V.E. McClintock, A. Stefanovska, Evolution of cardio-respiratory interactions with age. Phil. Trans. R. Soc. Lond. A. 371, 20110622 (2013)

    Google Scholar 

  42. M. Roustit, S. Blaise, C. Millet, J.L. Cracowski, Reproducibility and methodological issues of skin post-occlusive and thermal hyperemia assessed by single-point laser Doppler flowmetry. Microvasc. Res. 79(2), 102–108 (2010)

    Article  Google Scholar 

  43. M. Bračič, A. Stefanovska, Wavelet based analysis of human blood flow dynamics. Bull. Math. Biol. 60(5), 919–935 (1998)

    Article  MATH  Google Scholar 

  44. A. Stefanovska, Coupled oscillators: complex but not complicated cardiovascular and brain interactions. IEEE Eng. Med. Biol. Mag. 26(6), 25–29 (2007)

    Article  Google Scholar 

  45. J. Cracowski, M. Roustit, Reproducibility of LDF blood flow measurements: dynamical characterization versus averaging. A response to the letter from Stefanovska. Microvasc. Res. 82, 274–276 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomislav Stankovski .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stankovski, T. (2014). Application to Life Sciences. In: Tackling the Inverse Problem for Non-Autonomous Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-00753-3_4

Download citation

Publish with us

Policies and ethics