Skip to main content

Bayesian Inference of Time-Evolving Coupled Systems in the Presence of Noise

  • Chapter
  • First Online:
Tackling the Inverse Problem for Non-Autonomous Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 555 Accesses

Abstract

A method is introduced for the analysis of interactions between time-dependent coupled oscillators, based on the signals they generate. It distinguishes unsynchronized dynamics from noise-induced phase slips, and enables the evolution of the coupling functions and other parameters to be followed. The technique is based on Bayesian inference of the time-evolving parameters, achieved by shaping the prior densities to incorporate knowledge of previous samples. The dynamics can be inferred from phase variables, in which case a finite number of Fourier base functions is used, or from state variables exploiting the model state base functions. The latter procedure is used for the detection of generalized synchronization. The method is tested numerically and applied to reveal and quantify the time-varying nature of synchronization, directionality and coupling functions from both cardiorespiratory and analogue electronic signals. It is found that, in contrast to many systems with time-invariant coupling functions, the functional relations for the interactions of an open (biological) system can in themselves be time-varying processes. The cardiorespiratory analysis demonstrated that not only the parameters, but also the functional relationships, can be time-varying, and the new technique can effectively follow their evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that Fig. 3.1 shows inference of two coupled noisy Poincaré oscillators with time-varying frequency of one oscillator—for clarity and compactness of presentation the details are not shown here, but the reader can refer to the model and other details in Sect. 3.4.

References

  1. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization—A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  2. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984)

    Book  MATH  Google Scholar 

  3. R.F. Galán, G.B. Ermentrout, N.N. Urban, Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. Phys. Rev. Lett. 94, 158101 (2005)

    Article  ADS  Google Scholar 

  4. I.Z. Kiss, Y. Zhai, J.L. Hudson, Predicting mutual entrainment of oscillators with experiment-based phase models. Phys. Rev. Lett. 94, 248301 (2005)

    Article  ADS  Google Scholar 

  5. J. Miyazaki, S. Kinoshita, Determination of a coupling function in multicoupled oscillators. Phys. Rev. Lett. 96, 194101 (2006)

    Article  ADS  Google Scholar 

  6. B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky, R. Mrowka, Uncovering interaction of coupled oscillators from data. Phys. Rev. E 76, 055201 (2007)

    Article  ADS  Google Scholar 

  7. I.T. Tokuda, S. Jain, I.Z. Kiss, J.L. Hudson, Inferring phase equations from multivariate time series. Phys. Rev. Lett. 99, 064101 (2007)

    Article  ADS  Google Scholar 

  8. Z. Levnajić, A. Pikovsky, Network reconstruction from random phase resetting. Phys. Rev. Lett. 107, 034101 (2011)

    Article  ADS  Google Scholar 

  9. D.G. Luchinsky, V.N. Smelyanskiy, A. Duggento, P.V.E. McClintock, Inferential framework for nonstationary dynamics. I. Theory. Phys. Rev. E 77, 061105 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Duggento, D.G. Luchinsky, V.N. Smelyanskiy, I. Khovanov, P.V.E. McClintock, Inferential framework for nonstationary dynamics. II. Application to a model of physiological signaling. Phys. Rev. E 77, 061106 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  11. V.N. Smelyanskiy, D.G. Luchinsky, D.A. Timucin, A. Bandrivskyy, Reconstruction of stochastic nonlinear dynamical models from trajectory measurements. Phys. Rev. E 72(2), 026202 (2005)

    Article  ADS  Google Scholar 

  12. A. Duggento, D.G. Luchinsky, V.N. Smelyanskiy, P.V.E. McClintock, Inferential framework for non-stationary dynamics: theory and applications. J. Stat. Mech. 2009, P01025 (2009)

    Article  Google Scholar 

  13. T. Bayes. Essay towards solving a problem in the doctrine of chances. Philos. Trans. R. Soc. Lond. 53 370–418 (1973)

    Google Scholar 

  14. K.J. Friston, Bayesian estimation of dynamical systems: an application to fMRI. Neuroimage 16(2), 513–530 (2002)

    Article  Google Scholar 

  15. E.B. Sudderth, A.T. Ihler, M. Isard, W.T. Freeman, A.S. Willsky, Nonparametric belief propagation. Commun. ACM 53, 95–103 (2010)

    Article  Google Scholar 

  16. U. von Toussaint, Bayesian inference in physics. Rev. Mod. Phys. 83(3), 943–999 (2011)

    Article  ADS  Google Scholar 

  17. T. Stankovski, A. Duggento, P. V. E. McClintock, A. Stefanovska. A tutorial on time-evolving dynamical Bayesian inference. (2013)

    Google Scholar 

  18. Andrea Duggento, Tomislav Stankovski, Peter V.E. McClintock, Aneta Stefanovska, Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators. Phys. Rev. E 86, 061126 (2012)

    Article  ADS  Google Scholar 

  19. P. Tass, M.G. Rosenblum, J. Weule, J. Kurths, A. Pikovsky, J. Volkmann, A. Schnitzler, H.-J. Freund, Detection of \(n\):\(m\) phase locking from noisy data: Application to magnetoencephalography. Phys. Rev. Lett. 81, 3291–3294 (1998)

    Article  ADS  Google Scholar 

  20. F. Mormann, K. Lehnertz, P. David, C.E. Elger, Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D 144, 358–369 (2000)

    Article  ADS  MATH  Google Scholar 

  21. B. Schelter, M. Winterhalder, R. Dahlhaus, J. Kurths, J. Timmer, Partial phase synchronization for multivariate synchronizing systems. Phys. Rev. Lett. 96, 208103 (2006)

    Article  ADS  Google Scholar 

  22. B. Musizza, A. Stefanovska, P.V.E. McClintock et al., Interactions between cardiac, respiratory and EEG-Delta oscillations in rats during anaesthesia. J. Physiol. 580(1), 315–326 (2007)

    Article  Google Scholar 

  23. Y. Shiogai, A. Stefanovska, P.V.E. McClintock, Nonlinear dynamics of cardiovascular ageing. Phys. Rep. 488, 51–110 (2010)

    Article  ADS  Google Scholar 

  24. M. Paluš, A. Stefanovska, Direction of coupling from phases of interacting oscillators: an information-theoretic approach. Phys. Rev. E 67, 055201 (2003)

    Article  ADS  Google Scholar 

  25. A. Bahraminasab, F. Ghasemi, A. Stefanovska, P.V.E. McClintock, H. Kantz, Direction of coupling from phases of interacting oscillators: a permutation information approach. Phys. Rev. Lett. 100, 084101 (2008)

    Article  ADS  Google Scholar 

  26. M.G. Rosenblum, A.S. Pikovsky, Detecting direction of coupling in interacting oscillators. Phys. Rev. E 64, 045202 (2001)

    Article  ADS  Google Scholar 

  27. B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky, R. Mrowka, Phase dynamics of coupled oscillators reconstructed from data. Phys. Rev. E 77, 066205 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  28. J. Jamšek, M. Paluš, A. Stefanovska, Detecting couplings between interacting oscillators with time-varying basic frequencies: instantaneous wavelet bispectrum and information theoretic approach. Phys. Rev. E 81, 036207 (2010)

    Article  ADS  Google Scholar 

  29. S. Hempel, A. Koseska, J. Kurths, Z. Nikoloski, Inner composition alignment for inferring directed networks from short time series. Phys. Rev. Lett. 107, 054101 (2011)

    Article  ADS  Google Scholar 

  30. T. Schreiber, A. Schmitz, Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77(4), 635–638 (1996)

    Article  ADS  Google Scholar 

  31. M. Paluš, Bootstrapping multifractals: surrogate data from random cascades on wavelet dyadic trees. Phys. Rev. Lett. 101(13), 134101 (2008)

    Article  ADS  Google Scholar 

  32. A.T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15 (1967)

    Article  Google Scholar 

  33. H. Daido, Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: bifurcation of the order function. Physica D 91, 24–66 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Daido, Multibranch entrainment and scaling in large populations of coupled oscillators. Phys. Rev. Lett. 77, 1406–1409 (1996)

    Article  ADS  Google Scholar 

  35. J.D. Crawford, Scaling and singularities in the entrainment of globally coupled oscillators. Phys. Rev. Lett. 74, 4341–4344 (1995)

    Article  ADS  Google Scholar 

  36. A. Neiman, L. Schimansky-Geier, A. Cornell-Bell, F. Moss, Noise-enhanced phase synchronization in excitable media. Phys. Rev. Lett. 83(23), 4896–4899 (1999)

    Article  ADS  Google Scholar 

  37. D. Garcia-Alvarez, A. Bahraminasab, A. Stefanovska, P.V.E. McClintock, Competition between noise and coupling in the induction of synchronisation. EPL 88(3), 30005 (2009)

    Article  ADS  Google Scholar 

  38. C. Zhou, J. Kurths, Noise-induced phase synchronization and synchronization transitions in chaotic oscillators. Phys. Rev. Lett. 88, 230602 (2002)

    Article  ADS  Google Scholar 

  39. O.V. Popovych, C. Hauptmannn, P.A. Tass, Effective desynchronization by nonlinear delayed feedback. Phys. Rev. Lett. 94, 164102 (2005)

    Article  ADS  Google Scholar 

  40. A. Stefanovska, H. Haken, P.V.E. McClintock, M. Hožič, F. Bajrović, S. Ribarič, Reversible transitions between synchronization states of the cardiorespiratory system. Phys. Rev. Lett. 85, 4831–4834 (2000)

    Article  ADS  Google Scholar 

  41. R. Bartsch, J.W. Kantelhardt, T. Penzel, S. Havlin, Experimental evidence for phase synchronization transitions in the human cardiorespiratory system. Phys. Rev. Lett. 98, 054102 (2007)

    Article  ADS  Google Scholar 

  42. D.A. Kenwright, A. Bahraminasab, A. Stefanovska, P.V.E. McClintock, The effect of low-frequency oscillations on cardio-respiratory synchronization. Eur. Phys. J. B 65(3), 425–433 (2008)

    Article  ADS  Google Scholar 

  43. M.B. Lotrič, A. Stefanovska, Synchronization and modulation in the human cardiorespiratory system. Physica A 283(3–4), 451–461 (2000)

    Article  ADS  Google Scholar 

  44. C.D. Lewis, G.L. Gebber, S. Zhong, P.D. Larsen, S.M. Barman, Modes of baroreceptor-sympathetic coordination. J. Neurophysiol. 84(3), 1157–1167 (2000)

    Google Scholar 

  45. I. Daubechies, J. Lu, H.-T. Wu, Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30(2), 243–261 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. M.E.J. Newman, The structure and function of complex networks. SIAM Rev 45(2), 167–256 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. A. Arenas, A. Daz-Guilera, J. Kurths, Y. Moreno, C. Zhou. Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)

    Google Scholar 

  48. T. Stankovski, A. Duggento, P.V.E. McClintock, A. Stefanovska, Inference of time-evolving coupled dynamical systems in the presence of noise. Phys. Rev. Lett. 109, 024101 (2012)

    Article  ADS  Google Scholar 

  49. A. Stefanovska, M. Bračič, Physics of the human cardiovascular system. Contemp. Phys. 40, 31–55 (1999)

    Article  ADS  Google Scholar 

  50. D. Rudrauf, A. Douiri, C. Kovach, J.P. Lachaux, D. Cosmelli, M. Chavez, C. Adam, B. Renault, J. Martinerie, M.L. Van Quyen, Frequency flows and the time-frequency dynamics of multivariate phase synchronization in brain signals. Neuroimage 31(1), 209–227 (2006)

    Article  Google Scholar 

  51. V. Smidl, A. Quinn. The variational Bayes method in signal processing (Springer, Hidelberg, 2005)

    Google Scholar 

  52. F.W. Charles, R.J. Stephen, A tutorial on variational Bayesian inference. Artif. Intell. Rev. 38(2), 85–95 (2012)

    Article  Google Scholar 

  53. L. Kocarev, U. Parlitz, General approach for chaotic synchronization with applications to communication. Phys. Rev. Lett. 74(25), 5028–5031 (1995)

    Article  ADS  Google Scholar 

  54. V.N. Smelyanskiy, D.G. Luchinsky, A. Stefanovska, P.V.E. McClintock, Inference of a nonlinear stochastic model of the cardiorespiratory interaction. Phys. Rev. Lett. 94, 098101 (2005)

    Article  ADS  Google Scholar 

  55. L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  56. N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, H.D.I. Abarbanel, Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51, 980–994 (1995)

    Article  ADS  Google Scholar 

  57. L. Kocarev, U. Parlitz, Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett. 76(11), 1816–1819 (1996)

    Article  ADS  Google Scholar 

  58. M. Paluš at al. Synchronization as adjustment of information rates: detection from bivariate time series. Phys. Rev. E 63, 046211 (2001)

    Google Scholar 

  59. C.J. Stam, B.W. van Dijk, Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D 163(34), 236–251 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Z. Liu, J. Zhou, T. Munakata, Detecting generalized synchronization by the generalized angle. EPL 87(5), 50002 (2009)

    Article  ADS  Google Scholar 

  61. J.P. Eckmann, D. Ruelle, Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamic systems. Physica D 56, 185–187 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomislav Stankovski .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stankovski, T. (2014). Bayesian Inference of Time-Evolving Coupled Systems in the Presence of Noise. In: Tackling the Inverse Problem for Non-Autonomous Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-00753-3_3

Download citation

Publish with us

Policies and ethics