Boolean Model of the Cell Cycle Response to Stress

  • Elahe Radmaneshfar
Part of the Springer Theses book series (Springer Theses)


Understanding complex biological systems, e.g. the cell cycle, requires not only sophisticated experimental techniques but also adequate mathematical models. Many different mathematical approaches, from quantitive to qualitative, from continuous to discrete, have been applied to study the cell in different environmental conditions. In this chapter, we introduce a second complementary modelling approach to study the response of the cell cycle to osmotic and alpha-factor signal: we construct a Boolean network which describes the dynamical behaviour of the cell cycle response to multiple extracellular signals.


  1. 1.
    R. Albert, H.G. Othmer, The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 223(1), 1–18 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    G. Charvin, C. Oikonomou, E.D. Siggia, F.R. Cross, Origin of irreversibility of cell cycle start in budding yeast. PLoS Biol. 8(1), e1000284 (2010)Google Scholar
  3. 3.
    K.C. Chen, A. Csikasz-Nagy, B. Gyorffy, J. Val, B. Novak, J.J. Tyson, Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell 11(1), 369–391 (2000)CrossRefGoogle Scholar
  4. 4.
    K.C. Chen, L. Calzone, A. Csikasz-nagy, F.R. Cross, B. Novak, J.J. Tyson, Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15(August), 3841–3862 (2004)CrossRefGoogle Scholar
  5. 5.
    M. Davidich, S. Bornholdt, The transition from differential equations to Boolean networks: a case study in simplifying a regulatory network model. J. Theor. Biol. 255(3), 269–277 (2008)CrossRefGoogle Scholar
  6. 6.
    M.I. Davidich, S. Bornholdt, Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3(2), e1672 (2008)Google Scholar
  7. 7.
    S. Kauffman, Origins of Order: Self-organization and Selection in Evolution (Oxford University Press, Oxford, 1993). Technical monographGoogle Scholar
  8. 8.
    E. Klipp, B. Nordlander, R. Kröger, P. Gennemark, S. Hohmann, Integrative model of the response of yeast to osmotic shock. Nat. Biotechnol. 23(8), 975–982 (2005)CrossRefGoogle Scholar
  9. 9.
    F. Li, T. Long, Y. Lu, Q. Ouyang, C. Tang, The yeast cell-cycle network is robustly designed. PNAS 101(14), 4781–4786 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Okabe, M. Sasai, Stable stochastic dynamics in yeast cell cycle. Biophys. J. 93(10), 3451–3459 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    E. Radmaneshfar, M. Thiel, Recovery from stress: a cell cycle perspective. J. Comp. Int. Sci. 3(1–2), 33–44 (2012)Google Scholar
  12. 12.
    E. Radmaneshfar, D. Kaloriti, M.C. Gustin, N.A.R Gow, A.J.P Brown, C. Grebogi, M.C. Romano, M. Thiel, From START to FINISH: the influence of osmotic stress on the cell cycle. PLoS ONE 8(7), e68067 (2013)Google Scholar
  13. 13.
    V. Reiser, K.E. D’Aquino, E. Ly-Sha, A. Amon, The stress-activated mitogen-activated protein kinase signaling cascade promotes exit from mitosis. Mol. Biol. Cell 17(7), 3136–3146 (2006)CrossRefGoogle Scholar
  14. 14.
    F. Robert, Discrete iterations: a metric study. Springer Series in Computational Mathematics (1986)Google Scholar
  15. 15.
    J. Saez-Rodriguez, L. Simeoni, J.A. Lindquist, R. Hemenway, U. Bommhardt, B. Arndt, U.-U. Haus, R. Weismantel, E.D. Gilles, S. Klamt, B. Schraven, A logical model provides insights into T cell receptor signaling. PLoS Comput. Biol. 3(8), 1580–1590 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen, P.O. Brown, D. Botstein, B. Futcher, Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9(12), 3273–3297 (1998)CrossRefGoogle Scholar
  17. 17.
    M. Tyers, G. Tokiwa, B. Futcher, Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J. 12(5), 1955–1968 (1993)Google Scholar
  18. 18.
    J.J. Tyson, B. Novak, Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 210(2), 249–263 (2001)CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, M. Qian, Q. Ouyang, M. Deng, F. Li, C. Tang, Stochastic model of yeast cell-cycle network. Phys. D: Nonlinear Phenom. 219(1), 35–39 (2006)MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Physics, Institute of Complex Systems and Mathematical BiologyUniversity of AberdeenOld AberdeenUK

Personalised recommendations