Skip to main content

Tunneling Negative Differential Resistance in a GSC

  • Chapter
  • First Online:
Electrical Properties of Graphite Nanoparticles in Silicone

Part of the book series: Springer Theses ((Springer Theses))

  • 721 Accesses

Abstract

This chapter describes the discovery of a wide NDR region in a graphite silicone composite (GSC) at low temperatures. Experimental and theoretical evidence is used to demonstrate that the NDR originates from a semi-metal to insulator transition of embedded bilayers in specifically orientated graphite nanoparticles. NDR has not been observed before in a GSCs and could be exploited to create flexible oscillators and amplifiers, realizing flexible active electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    First recorded in 2009 with lab partner James Stretton at the University of Bath.

  2. 2.

    Annealed using Ashok Chauhan’s tube furnace at the University of Bath.

  3. 3.

    XRD data measured by Harry Bone, technician at the University of Bath.

References

  1. W. Yoon, S. Chung, P.R. Berger, S.M. Asar, Room temperature negative differential resistance in polymer tunnel diodes using a thin oxide layer and demonstration of threshold logic. Appl. Phys. Lett. 87(20), 203506 (2005)

    Article  ADS  Google Scholar 

  2. A. Tang, S. Qu, Y. Hou, F. Teng, H. Tan, J. Liu, X. Zhang, Y. Wang, Z. Wang, Electrical bistability and negative differential resistance in diodes based on silver nanoparticle-poly(n-vinylcarbazole) composites. J. Appl. Phys. 108(9), 094320 (2010)

    Article  ADS  Google Scholar 

  3. L.D. Bozano, B.W. Kean, V.R. Deline, J.R. Salem, J.C. Scott, Mechanism for bistability in organic memory elements. Appl. Phys. Lett. 84(4), 607–609 (2004)

    Article  ADS  Google Scholar 

  4. J. Ouyang, Application of nanomaterials in two-terminal resistive-switching memory devices. Nano Rev. 1, 5118 (2010)

    Google Scholar 

  5. A. Ramesh, P.R. Berger, R. Loo, High 5.2 peak-to-valley current ratio in Si/SiGe resonant interband tunnel diodes grown by chemical vapor deposition. Appl. Phys. Lett. 100(9), 092104 (2012)

    Article  ADS  Google Scholar 

  6. J. Zhang, S. Zhang, S. Feng, Z. Jiang, The correlativity of positive temperature coefficient effects in conductive silicone rubber. Polym. Int. 54(8), 1175–1179 (2005)

    Article  Google Scholar 

  7. J. Huang, Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol. 21(4), 299–313 (2002)

    Article  Google Scholar 

  8. M.S. Dresselhaus, G. Dresselhaus, Intercalation compounds of graphite. Adv. Phys. 52(1), 1–186 (2002)

    Article  ADS  Google Scholar 

  9. S. Littlejohn, A. Nogaret, S. Crampin, Tunneling negative differential resistance in a flexible active composite. Adv. Mater. 23(25), 2815–2818 (2011)

    Article  Google Scholar 

  10. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)

    Article  ADS  Google Scholar 

  11. K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Fal’ko, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A.K. Geim, Unconventional quantum Hall effect and Berry’s phase of \(2\pi \) in bilayer graphene. Nat. Phys. 2(3), 177–180 (2006)

    Article  Google Scholar 

  12. K. Sugihara, K. Kawamuma, T. Tsuzuku, Temperature dependence of the average mobility in graphite. J. Phys. Soc. Jpn. 47(4), 1210–1215 (1979)

    Article  ADS  Google Scholar 

  13. R. Tsu, L. Esaki, Tunneling in a finite superlattice. Appl. Phys. Lett. 22(11), 562–564 (1973)

    Article  ADS  Google Scholar 

  14. X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)

    Article  ADS  Google Scholar 

  15. X.W. Zhang, Y. Pan, Q. Zheng, X.S. Yi, Piezoresistance of conductor filled insulator composites. Polym. Int. 50(2), 229–236 (2001)

    Article  Google Scholar 

  16. L. Zhou, J. Lin, H. Lin, G. Chen, Electrical-thermal switching effect in high-density polyethylene/graphite nanosheets conducting composites. J. Mater. Sci. 43(14), 4886–4891 (2008)

    Article  ADS  Google Scholar 

  17. F. El-Tantawy, K. Kamada, H. Ohnabe, A novel way of enhancing the electrical and thermal stability of conductive epoxy resin-carbon black composites via the Joule heating effect for heating-element applications. J. Appl. Polym. Sci. 87(2), 97–109 (2003)

    Article  Google Scholar 

  18. J. Zhang, S. Feng, X. Wang, DC current voltage characteristics of silicone rubber filled with conductive carbon black. J. Appl. Polym. Sci. 94(2), 587–592 (2004)

    Article  Google Scholar 

  19. W.F. Chow, Principles of Tunnel Diode Circuits (Wiley, New York, 1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel David Littlejohn .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Littlejohn, S.D. (2014). Tunneling Negative Differential Resistance in a GSC. In: Electrical Properties of Graphite Nanoparticles in Silicone. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-00741-0_4

Download citation

Publish with us

Policies and ethics