Advertisement

On Active Vibrations Control of a Flexible Rotor Running in Flexibly-Mounted Journal Bearings

  • Mohamed M. EimadanyEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 43)

Abstract

Increasing demands on rotating machinery in terms of higher running speed, less weight and noise, safety and longevity require well controlled dynamics of the system. This paper addresses a means of actively controlling the synchronous vibrations of a flexible rotor running in flexibly-mounted journal bearings. An isotropic optimal controller of the anisotropic rotor-bearing system in complex state space is designed. The isotropic controller essentially eliminates the backward unbalance response component, leading to circular whirling. Simulation results are presented which demonstrate that the isotropic optimal control is more efficient in controlling unbalance whirl than the conventional optimal control.

Keywords

Isotropic optimal control Rotating machinery Flexible rotor Synchronous vibration. 

Notes

Acknowledgments

The author would like to thank the Research Center, College of Engineering, King Saud University for supporting this work under grant number 5/429 from SABIC. The assistance and encouragement of the Research Center are very much appreciated.

References

  1. 1.
    Vance, J.M., Li, J.: Test results of a new damper seal for vibration reduction in turbomachinery. ASME J. Eng. Gas Turbines Power 118(4), 843–846 (1996)Google Scholar
  2. 2.
    San Andrés, L., Lubell, D.: Imbalance response of a test rotor supported on squeeze film dampers. ASME J. Eng. Gas Turbines Power 120(2), 397–404 (1998)Google Scholar
  3. 3.
    El-Shafei, A., Dimitri, A.S.: Controlling journal bearing instability using active magnetic bearings. In: Proceedings of ASME Turbo Expo : Paper GT2007-28059. Montreal, Canada (2007)Google Scholar
  4. 4.
    Ulbrich, H., Althaus, J.: Actuator Design for Rotor Control. In: proceedings, 1989, 12th Biennial ASME Conference on Vibration and Noise, Montreal, Sept.17-21, pp. 17–22 (1989)Google Scholar
  5. 5.
    Santos, I.F.: On the adjusting of the dynamic coefficients of tilting-pad journal bearings. STLE Tribol. Trans. 38(3), 700–706 (1995)CrossRefGoogle Scholar
  6. 6.
    Goodwin, M.J., Boroomand, T., Hooke, C.J.: Variable impedance hydrodynamic journal bearings for controlling flexible rotor vibrations. In: Proceedings, 1989, 12th Biennial ASME Conference on Vibration and Noise, Montreal, 17–21 Sept. pp. 261–267 (1989)Google Scholar
  7. 7.
    Santos, I.F.: Design and evaluation of two types of active tilting-pad journal bearings. In: Proceedings, pp. 79–87. IUTAM Symposium on Active Control of Vibration, Bath, England (1994)Google Scholar
  8. 8.
    Santos, I.F., Russo, F.H.: Tilting-pad journal bearings with electronic radial oil injection. ASME J. Tribol. 120(3), 583–594 (1998)CrossRefGoogle Scholar
  9. 9.
    Santos, I.F., Nicoletti, R.: THD analysis in tilting-pad journal bearings using multiple orifice hybrid lubrication. ASME Trans. J. Tribol. 121(4), 892–900 (1999)CrossRefGoogle Scholar
  10. 10.
    Santos, I.F., Scalabrin, A.: Control system design for active lubrication with theoretical and experimental examples. ASME J. Eng. Gas Turbine Power 125(1), 75–80 (2003)CrossRefGoogle Scholar
  11. 11.
    Bently, D.E., Grant, J.W., Hanifan, P.C.: Active controlled hydrostatic bearings for a new generation of machines. In: proceedings, 2000, ASME/IGTI International Gas Turbine & Aeroengine Congress & Exhibition, Munich, Germany, may 8–11, Paper 2000-GT-354Google Scholar
  12. 12.
    Osman, T.A., Nada, G.S., Safar, Z.S.: Static and dynamic characteristics of magnetized journal bearings lubricated with ferrofluid. Tribol. Int. 34(6), 369–380 (2001)CrossRefGoogle Scholar
  13. 13.
    Santos, I.F., Watanabe, F.Y.: Feasibility of influencing the dynamic fluid film coefficients of a multirecess journal bearing by means of active hybrid lubrication. RBCM—J. Brazilian Soc. Mech. Sci. 25(2), 154–163 (2003)CrossRefGoogle Scholar
  14. 14.
    Zhu, W., Castelazo, I., Nelson, H.D.: An active optimal control strategy of rotor vibrations using external forces. In: Proceedings, : ASME Design Technical Conferences—12th Biennial Conference on Mechanical Vibration and Noise. Rotating Machinery Dynamics, DE 18, 351–359 (1989)Google Scholar
  15. 15.
    Abduljabbar, Z., ElMadany, M.M., Abdulwahab, A.A.: Active Vibration Control of a Flexible Rotor. Comput Struct. 58(3), 499–511 (1996)CrossRefzbMATHGoogle Scholar
  16. 16.
    Higuchi, T., Otsuka, M., Mizuno, T., Ise, T.: Application of periodic learning control with inverse transfer function compensation in totally active magnetic bearings. In: Proceedings, 1990, 2nd International Symposium on Magnetic Bearings, Tokyo, pp. 257–264Google Scholar
  17. 17.
    Knopse, C.R.: Robustness of unbalance response controllers. In: Proceedings, 1992, 3rd International Symposium on Magnetic Bearings, Alexandria, pp. 580–589Google Scholar
  18. 18.
    Larsonneur, R., Siegwart, R., Traxler, A.: Active magnetic bearings control strategies for solving vibration problems in industrial rotor systems. In: Proceedings, 1992, IMechE Conf. on Vibrations in Rotating, Machinery, C432/088, pp. 83–90Google Scholar
  19. 19.
    Abduljabbar, Z., ElMadany, M., Al-Bahkali, E.: On the vibration and control of a flexible rotor mounted on fluid film bearings. Comput Struct. 65(6), 849–856 (1997)CrossRefzbMATHGoogle Scholar
  20. 20.
    Mizutari, K., Asai, A., Katok, K.: Semi-active vibration control for overhung rotor system. Trans. Japan Soc. Mech. Eng. Part C 63(616), 4102–4107 (1997)CrossRefGoogle Scholar
  21. 21.
    ElMadany, M.M., Abduljabbar, Z.: Controller design for high-performance turbomachines. J. Vib. Control 6, 1205–1223 (2000)CrossRefGoogle Scholar
  22. 22.
    Li, W., Maisser, P., Enge, H.: Self-learning Control Applied to Vibration Control of a Rotating Spindle by Piezopusher Bearings. In: Proceedings of the Institute of Mechanical Engineers - Part I: Journal of Systems and Control Engineering 218(3), 185–196 (2004)Google Scholar
  23. 23.
    Nicoletti, R.: Control system design for flexible rotors supported by actively lubricated bearings. J. Vib. Control 14, 347–374 (2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    Tammi, K.: Gradient-based repetitive learning control for rotor vibration control. Int. J. Intel. Control Sys. 3, 222–232 (2008)Google Scholar
  25. 25.
    Ondrouch, J., Ferfecki, P., Poruba, Z.: Vibration reduction of rigid rotor supported by journal bearings. Model. Optimization Phys. Sys. 8, 85–90 (2009)Google Scholar
  26. 26.
    Juhanko, J., Porkka, E., Kuosmanen, P., Valkonen, A., Järviluoma, M.: Active vibration control of a paper machine roll. In: Proceedings, 6th International DAAAM Baltic Conference, 4–26 April 2008, Tallinn, EstoniaGoogle Scholar
  27. 27.
    Tüma, J.. Škuta, J. , Klečka, R. , Los, J., Šimek, J.: A laboratory test stand for active control of journal bearings. In: Proceeding Colloquium Dynamics of Machines 2010, Inst. of Thermomechanics, Prague, 2–3 Feb 2010, pp. 95–100Google Scholar
  28. 28.
    Santos, I.F.: On the future of controllable fluid film bearings. Mech. Ind. 12, 275–281 (2011)Google Scholar
  29. 29.
    Lee, C.W., Byun, S.W.: Optimal complex modal-space control of rotating disc vibrations. Optimal Control App. Meth. 9, 357–370 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kim, C.S., Lee, C.W.: Isotropic control of rotor bearing system. In: Proceedings, 1993, The 14th Biennial ASME Conference on Mechanical Vibration and Noise, Albuquerque, pp. 325–330Google Scholar
  31. 31.
    Kim, C.S., Lee, C.W.: Isotropic optimal control of active magnetic bearing system. J. Dyn. Sys. Meas. Control 118, 721–726 (1993)CrossRefGoogle Scholar
  32. 32.
    Holmes, R.: The vibration of a rigid shaft on short sleeve bearings. J. Mech. Eng. Sci. 2, 337–341 (1960)CrossRefGoogle Scholar
  33. 33.
    Lund, J.W.: Review of concepts of dynamic coefficients for fluid film journal bearings. ASME J. Tribol. 109, 37–41 (1987)CrossRefGoogle Scholar
  34. 34.
    Gawronski, W.K.: Advanced structural dynamics and active control of structures. Springer, New York (2004). ISBN 0387406492Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations