Skip to main content

A Genetic Algorithm for Optimization of Hybrid Laminated Composite Plates

  • Chapter
  • First Online:
Optimization of Structures and Components

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 43))

Abstract

This chapter presents a genetic algorithm (GA) to pursue the optimization of hybrid laminated composite plates. Fiber orientation (predefined ply angles), material (glass-epoxy or carbon-epoxy layer) and total number of plies are considered as design variables. The constraints of the optimization problem are taken into account by a multiplicative dynamic penalty approach. The GA is chosen as an optimization tool because of its ability to deal with non-convex, multimodal and discrete optimization problems, of which the design of laminated composites is an example. First, the developed algorithm is detailed explained and, in the first example, validated by comparing its results to other obtained from the literature for non-hybrid laminates. Then, two examples of material cost minimization of hybrid laminates are solved, under the constraints of a maximum weight and buckling or ply failure. In the example where the ply failure is used as a constraint, three different criteria are tested independently: maximum stress, Tsai-Wu and the Puck failure criterion and the results yielded by them are compared and discussed. It was found that each failure criterion yielded a different optimal design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim, H.A., Kennedy, D., Gürdal, Z.: Special issue on optimization of aerospace structures. Struct Multidiscip Optim 36, 1–2 (2008)

    Article  Google Scholar 

  2. Nagendra, S., Haftka, R.T.Gürdal, Z, : Stacking sequence optimization of simply supported laminates with stability and strain constraints. AIAA J 30, 2132–2137 (1992)

    Google Scholar 

  3. Le Riche, R., Haftka, R.: Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm. AIAA J 31, 951–956 (1993)

    Article  MATH  Google Scholar 

  4. Nagendra, S., Jestin, D., Gürdal, Z., Haftka, R., Watson, L.: Improved genetic algorithm for the design of stiffened composite panels. Comput Struct 58, 543–555 (1994)

    Article  Google Scholar 

  5. Todoroki, A., Haftka, R.: Stacking sequence optimization by a genetic algorithm with a new recessive gene like repair strategy. Composites Part B 29, 277–285 (1998)

    Article  Google Scholar 

  6. Liu, B., Haftka, R., Akgun, M., Todoroki, A.: Permutation genetic algorithm for stacking sequence design of composite laminates. Comput Meth Appl Mech Eng 186, 357–372 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lopez, R.H., Luersen, M.A., Cursi E.S.: Optimization of laminated composites considering different failure criteria. Composites: Part B 40, 731–740 (2009)

    Google Scholar 

  8. Callahan, K.J., Weeks, G.E.: Optimum design of composite laminates using genetic algorithm. Compos Eng 2, 149–160 (1992)

    Article  Google Scholar 

  9. Groenwold, A., Haftka, R.: Optimization with non-homogeneous failure criteria like Tsai-Wu for composite laminates. Struct Multidiscip Optim 32, 183–190 (2006)

    Article  Google Scholar 

  10. Seresta, O., Gürdal, Z., Adams, D.B., Watson, L.T.: Optimal design of composite wing structures with blended laminates. Composites Part B 38, 469–480 (2007)

    Article  Google Scholar 

  11. Le Riche, R., Haftka, R.: Improved genetic algorithm for minimum thickness composite laminate design. Compos Eng 5, 143–161 (1995)

    Article  Google Scholar 

  12. Naik, G.N., Gopalakrishnan, S., Ganguli, R.: Design optimization of composites using genetic algorithms and failure mechanism based failure criterion. Compos Struct 83, 354–367 (2008)

    Article  Google Scholar 

  13. Diaconu, C.G., Sato, M., Sekine, H.: Layup optimization of symmetrically laminated thick plates for fundamental frequencies using lamination parameters. Struct Multidiscip Optim 24, 302–311 (2002)

    Article  Google Scholar 

  14. Karakaya, S., Soykasap, O.: Natural frequency and buckling optimization of laminated hybrid composite plates using genetic algorithm and simulated annealing. Struct Multidiscip Optim 43, 61–72 (2011)

    Article  Google Scholar 

  15. Sadr, M.H., Bargh, H.G.: Optimization of laminated composite plates for maximum fundamental frequency using Elitist-Genetic algorithm and finite strip method. J Global Optim 54, 707–728 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rahul, Sandeep G., Chakraborty, D., Dutta, A.: Multi-objective optimization of hybrid laminates subjected to transverse impact. Compos Struct 73, 360–369 (2006)

    Article  Google Scholar 

  17. Murugan, M.S., Suresh, S., Ganguli, R., Mani, V.: Target vector optimization of composite box beam using real-coded genetic algorithm: a decomposition approach. Struct Multidiscip Optim 33, 131–146 (2007)

    Article  Google Scholar 

  18. Corvino, M., Iuspa, L., Riccio, A., Scaramuzzino, F.: Weight and cost oriented multi-objective optimisation of impact damage resistant stiffened composite panels. Comput Struct 87, 1033–1042 (2009)

    Article  Google Scholar 

  19. Abouhamze, M., Shakeri, M.: Multi-objective stacking sequence optimization of laminated cylindrical panels using a genetic algorithm and neural networks. Compos Struct 81, 253–263 (2007)

    Article  Google Scholar 

  20. Badalló, P., Trias, D., Marín, L., Mayugo, J.A.: A comparative study of genetic algorithms for the multi-objective optimization of composite stringers under compression loads. Composites Part B 47, 130–136 (2013)

    Article  Google Scholar 

  21. Honda, S., Igarashi, T., Narita, Y.: Multi-objective optimization of curvilinear fiber shapes for laminated composite plates by using NSGA-II. Composites Part B 45, 1071–1078 (2013)

    Article  Google Scholar 

  22. Antonio, C.: A multilevel genetic algorithm for optimization of geometrically nonlinear stiffened composite structures. Struct Multidiscip Optim 24, 372–386 (2001)

    Google Scholar 

  23. Antonio, C.: A hierarchical genetic algorithm with age structure for multimodal optimal design of hybrid composites. Struct Multidiscip Optim 31, 280–294 (2006)

    Article  Google Scholar 

  24. Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Technol 58, 1045–1067 (1998)

    Article  Google Scholar 

  25. Puck, A.: Festigkeitsanalyse von Faser-Matrix-Laminaten: Modelle für die Praxis (Strength Analysis of Fiber-Matrix/Laminates: Models for Design Practice). Carl-Hanser- Verlag, Munich (1996)

    Google Scholar 

  26. Lopez, R.H., Luersen, M.A., Cursi, J.E.S.: Optimization of Hybrid Laminated Composites using a Genetic Algorithm. J Braz Soc Mech Sci & Eng 31, 269–278 (2009)

    Article  Google Scholar 

  27. Girard, F.: Optimisation de Stratifiés en Utilisant un Algorithme Génétique (Optimization of Laminates using a Genetic Algorithm). Sciences and Engineering Faculty, University of Laval, Quebec, Canada, Master’s Dissertation (2006)

    Google Scholar 

  28. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston (1989)

    Google Scholar 

  29. Schmitt, L.M.: Theory of genetic algorithms. Theor Comput Sci 259, 1–61 (2001)

    Article  MATH  Google Scholar 

  30. Puzzi, S., Carpinteri, A.: A double-multiplicative dynamic penalty approach for constrained evolutionary. Struct Multidiscip Optim 35, 431–445 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jones, R.M.: Mechanics of Composite Materials. Taylor and Francis, Philadelphia (1999)

    Google Scholar 

  32. Daniel, I.M.: Failure of Composite Materials. Strain 43, 4–12 (2007)

    Article  Google Scholar 

  33. Gürdal, Z., Haftka, R.T., Hajela, P.: Design and Optimization of Laminated Composite Materials. John Wiley & Sons, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Luersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luersen, M.A., Lopez, R.H. (2013). A Genetic Algorithm for Optimization of Hybrid Laminated Composite Plates. In: Muñoz-Rojas, P. (eds) Optimization of Structures and Components. Advanced Structured Materials, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-00717-5_4

Download citation

Publish with us

Policies and ethics