Topological Derivative for Multi-Scale Linear Elasticity Models in Three Spatial Dimensions

  • Antonio André NovotnyEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 43)


A remarkably simple analytical expression for the sensitivity of the three-dimensional macroscopic elasticity tensor to topological microstructural changes of the underlying material is obtained. The derivation of the proposed formula relies on the concept of topological derivative, applied within a variational multi-scale constitutive framework where the macroscopic strain and stress at each point of the macroscopic continuum are volume averages of their microscopic counterparts over a representative volume element (RVE) of material associated with that point. The derived sensitivity, given by a symmetric fourth order tensor field over the microstructure domain, measures how the estimated three-dimensional macroscopic elasticity tensor changes when a small spherical void is introduced at the micro-scale level. The obtained result can be applied in the synthesis and optimal design of three-dimensional elastic microstructures.


  1. 1.
    Bensoussan, A., Lions, J.L., Papanicolau, G.: Asymptotic Analysis for Periodic Microstructures. Elsevier, Amsterdam (1978)Google Scholar
  2. 2.
    Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965)CrossRefGoogle Scholar
  4. 4.
    Mandel, J.: Plasticité classique et viscoplasticité. Springer, Udine (1971). (CISM Lecture Notes)Google Scholar
  5. 5.
    Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory, volume 127 of Lecture Notes in Physics. Springer, Berlin (1980)Google Scholar
  6. 6.
    Suquet, P.M.: Elements of Homogenization for Inelastic Solid Mechanics, volume 272 of Homogenization Techniques for Composite Media, Lecture Notes in Physics 272. Springer, Berlin (1987)Google Scholar
  7. 7.
    Auriault, J.L.: Effective macroscopic description for heat conduction in periodic composites. Int. J. Heat Mass Transfer 26(6), 861–869 (1983)CrossRefzbMATHGoogle Scholar
  8. 8.
    Auriault, J.L., Royer, P.: Double conductivity media: a comparison between phenomenological and homogenization approaches. Int. J. Heat Mass Transfer 36(10), 2613–2621 (1993)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: Part I—yield criteria and flow rule for porous ductile media. J. Eng. Mater. Technol. Trans. ASME 99(1), 2–15 (1977)CrossRefGoogle Scholar
  10. 10.
    Nemat-Nasser, S.: Averaging theorems in finite deformation plasticity. Mech. Mater. 31(8), 493–523 (1999)CrossRefGoogle Scholar
  11. 11.
    Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, Amsterdam (1993)zbMATHGoogle Scholar
  12. 12.
    Ostoja-Starzewski, M., Schulte, J.: Bounding of effective thermal conductivities of multiscale materials by essential and natural boundary conditions. Phys. Rev. B 54(1), 278–285 (1996)CrossRefGoogle Scholar
  13. 13.
    Michel, J.C., Moulinec, H., Suquet, P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Meth. Appl. Mech. Eng. 172(1–4), 109–143 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Miehe, C., Schotte, J., Schröder, J.: Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput. Mater. Sci. 16(1–4), 372–382 (1999)CrossRefGoogle Scholar
  15. 15.
    Speirs, D.C.D., de Souza Neto, E.A., Perić, D.: An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization. J. Biomech. 41(12), 2673–2680 (2008)CrossRefGoogle Scholar
  16. 16.
    Oyen, M.L., Ferguson, V.L., Bembey, A.K., Bushby, A.J., Boyde, A.: Composite bounds on the elastic modulus of bone. J. Biomech. 41(11), 2585–2588 (2008)CrossRefGoogle Scholar
  17. 17.
    Giusti, S.M., Blanco, P.J., de Souza Neto, E.A., Feijóo, R.A.: An assessment of the Gurson yield criterion by a computational multi-scale approach. Eng. Comput. 26(3), 281–301 (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Celentano, D.J., Dardati, P.M., Godoy, L.A., Boeri, R.E.: Computational simulation of microstructure evolution during solidification of ductile cast iron. Int. J. Cast Met. Res. 21(6), 416–426 (2008)CrossRefGoogle Scholar
  19. 19.
    Lewinski, T., Telega, J.J.: Plates, laminates, and shells: asymptotic analysis and homogenization. World Scientific (2000)Google Scholar
  20. 20.
    Almgreen, R.F.: An isotropic three-dimensional structure with Poisson’s ratio -1. J. Elast. 15(4), 427–430 (1985)CrossRefGoogle Scholar
  21. 21.
    Lakes, R.: Foam structures with negative Poisson’s ratio. Science AAAS 235(4792), 1038–1040 (1987)CrossRefGoogle Scholar
  22. 22.
    Lakes, R.: Negative Poisson’s ratio materials. Science AAAS 238(4826), 551 (1987)CrossRefGoogle Scholar
  23. 23.
    Eschenauer, H.A., Olhoff, N.: Topology optmization of continuum structures: a review. Appl. Mech. Rev. 54(4), 331–390 (2001)CrossRefGoogle Scholar
  24. 24.
    Allaire, G.: Shape Optimization by the Homogenization Method, volume 146 of Applied Mathematical Sciences. Springer, New York (2002)CrossRefGoogle Scholar
  25. 25.
    Żochowski, A.: Optimal perforation design in 2-dimensional elasticity. Mech. Struct. Mach. 16(1), 17–33 (1988)CrossRefGoogle Scholar
  26. 26.
    Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using an homogenization method. Comput. Meth. Appl. Mech. Eng. 71(2), 197–224 (1988)CrossRefGoogle Scholar
  27. 27.
    Czarnecki, S., Lewinski, T.: A stress-based formulation of the free material design problem with the trace constraint and single loading condition. Bull. Pol. Acad. Sci. Tech. Sci. 60(2), (2012)Google Scholar
  28. 28.
    Nowak, M.: Structural optimization system based on trabecular bone surface adaptation. Struct. Multi Optim. 32(3), 241–249 (2006)CrossRefGoogle Scholar
  29. 29.
    Belytschko, T., Xiao, S., Parimi, C.: Topology optimization with implicit functions and regularization. Int. J. Numer. Meth. Eng. 57, 1177–1196 (2003)CrossRefzbMATHGoogle Scholar
  30. 30.
    Kikuchi, N., Nishiwaki, S., Fonseca, J.S.O., Silva, E.C.N.: Design optimization method for compliant mechanisms and material microstructure. Comput. Meth. Appl. Mech. Eng. 151(3–4), 401–417 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Sigmund, O.: Materials with prescribed constitutive parameters: an inverse homogenization problem. Int. J. Solids Struct. 31(17), 2313–2329 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Silva, E.C.N., Fonseca, J.S.O., Kikuchi, N.: Optimal design of periodic microstructures. Comput. Mech. 19(5), 397–410 (1997)CrossRefzbMATHGoogle Scholar
  33. 33.
    Giusti, S.M., Novotny, A.A., de Souza Neto, E.A., Feijóo, R.A.: Sensitivity of the macroscopic elasticity tensor to topological microstructural changes. J. Mech. Phys. Solids 57(3), 555–570 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Sokołowski, J., Żochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37(4), 1251–1272 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Germain, P., Nguyen, Q.S., Suquet, P.: Continuum thermodynamics. J. Appl. Mech. Trans. ASME 50(4), 1010–1020 (1983)CrossRefzbMATHGoogle Scholar
  36. 36.
    Amstutz, S., Giusti, S.M., Novotny, A.A., de Souza Neto, E.A.: Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures. Int. J. Numer. Meth. Eng. 84, 733–756 (2010)Google Scholar
  37. 37.
    Novotny, A.A., Feijóo, R.A., Taroco, E., Padra, C.: Topological sensitivity analysis for three-dimensional linear elasticity problem. Comput. Meth. Appl. Mech. Eng. 196(41–44), 4354–4364 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Laboratório Nacional de Computação Científica LNCC/MCTCoordenação de Matemática Aplicada e ComputacionalPetrópolis - RJBrasil

Personalised recommendations