Skip to main content

Ceramics: Effect of Powder and Slurry Properties on Quality

  • Chapter
  • First Online:
  • 2047 Accesses

Part of the book series: Particle Technology Series ((POTS,volume 19))

Abstract

Ceramics are widely used in industry. Especially, advanced ceramics are of growing importance for a large variety of industrial applications in relation to excellent features like high mechanical strength, high stability and high functional properties. Good performance results not only from details of ceramic powders but also from adequate focus on the details of the processing steps for manufacturing the ceramic products. This chapter focuses on the detrimental effect that the presence of few large particles, slurry properties and the structure and mechanical properties of granules in the green body have on the strength of the ceramic product. They have been found to initiate weak spots in ceramic products. Also, some new measurement approaches are explained that allow identification of the fracture origin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this chapter, average strength of sintered body means the arithmetic average of measured mechanical strength values.

References

  1. Abe, H., Hotta, T., Kuroyama, T., Yasutomi, Y., Naito, M., Kamiya, H., Uematsu, K.: Variation of microstrucuture and fracture strength of alumina ceramics made from different slurry preparing condition. Ceram. Process. Sci. Ceram. Trans. 112, 809–814 (2001); Am. Ceram. Soc

    Google Scholar 

  2. Abe, H., Hotta, T., Naito, M., Shinohara, N., Okumiya, M., Kamiya, H., Uematsu, K.: Origin of strength variation of silicon nitride ceramics with CIP condition in a powder compaction process. Powder Technol. 119, 194–200 (2001)

    Article  Google Scholar 

  3. Abe, H., Hotta, T., Naito, M., Shinohara, N., Uematsu, K.: Direct observation of detrimental defects in ceramics. Am. Ceram. Soc. Bull. 81, 31–34 (2002)

    Google Scholar 

  4. Abe, H., Naito, M., Hotta, T., Shinohara, N., Uematsu, K.: Flaw size distribution in high-quality alumina. J. Am. Ceram. Soc. 86, 1019–1021 (2003)

    Article  Google Scholar 

  5. Abe, H., Naito, M., Hotta, T., Kamiya, H., Uematsu, K.: Pore defects related to slurry character and their relevance to strength distribution in alumina cermics. Powder Technnol. 134, 58–64 (2003)

    Article  Google Scholar 

  6. Abe, H., Sato, K., Naito, M., Nogi, K., Hotta, T., Tatami, J., Komeya, K.: Effects of granule compaction procedures on defect structure, fracture strength and thermal conductivity of AlN ceramics. Powder Technol. 159, 155–160 (2005)

    Article  Google Scholar 

  7. Cho, Y.-I., Okumiya, M., Naito, M., Rabe, T., Waesche, R., Morrell, R., Ewsuk, K.G., Hackley, V., Freiman, S., Uematsu, K.: Characterization of coarse particles contained in fine powders at very low concentrations. Ceram. Trans. 133, 71–76 (2002). Am. Ceram. Soc

    Google Scholar 

  8. Hayakawa, O., Nakahira, K., Naito, M., Tsubaki, J.: Experimental analysis on sample preparation conditions for particle size measurement. Powder Technnol. 100, 61–68 (1998)

    Article  Google Scholar 

  9. Hiramatsu, Y., Oka, Y., Kiyama, H.: Rapid determination of tensile strength of rocks with irregular test pieces. Nihon kogyokai-shi (Jap.) 81, 1024 (1965)

    Google Scholar 

  10. Hotta, T., Nakahira, K., Naito, M., Shinohara, N., Okumiya, M., Uematsu, K.: Origin of strength change in ceramics associated with the alteration of spray dryer. J. Mater. Res. 14, 2974–2979 (1999)

    Article  ADS  Google Scholar 

  11. Hotta, T., Nakahira, K., Naito, M., Shinohara, N., Okumiya, M., Uematsu, K.: Origin of the strength change of silicon nitride ceramics with the alteration of spray drying conditions. J. Eur. Ceram. Soc. 21, 603–610 (2001)

    Article  Google Scholar 

  12. Hotta, T., Abe, H., Fukui, T., Naito, M., Shinohara, N., Uematsu, K.: Effect of dewaxing procedures of cold isostatically pressed silicon nitiride ceramics on its microstructure and fracture strength. Adv. Powder Technol. 14, 505–517 (2003)

    Article  Google Scholar 

  13. Hotta, T., Abe, H., Naito, M., Takahashi, M., Uematsu, K., Kato, Z.: Effect of coarse particles on the strength of alumina made by slip casting. Powder Technol. 149, 106–111 (2005)

    Article  Google Scholar 

  14. ISO 13383–1.: Fine ceramics – determination of grain size distribution in ceramic powders by image analysis of photomicrographs (2012)

    Google Scholar 

  15. ISO 14704.: Fine ceramics – test method for flexural strength (2008)

    Google Scholar 

  16. ISO 15732.: Fine ceramics – test method for fracture toughness by single edge pre-cracked beam (SEPB) method (2003)

    Google Scholar 

  17. ISO 20501.: Fine ceramics – Weibull statistics for strength data (2003)

    Google Scholar 

  18. ISO 24369.: Fine ceramics – determination of coarse particles in ceramic powders by wet sieving method (2005)

    Google Scholar 

  19. Lange, L.L.: Powder processing science and technology for increased reliabilty. J. Am. Ceram. Soc. 72, 3–15 (1989).

    Article  Google Scholar 

  20. Naito, M., Fukuda, Y., Yoshikawa, N., Kamiya, H., Tsubaki, J.: Optimization of suspension characteristics for shaping processes. J. Eur. Ceram. Soc. 17, 251–257 (1997)

    Article  Google Scholar 

  21. Naito, M., Hotta, T., Hayakawa, O., Shinohara, N., Uematsu, K.: Ball milling conditions of a very small amount of large particles in silicon nitride powder. J. Ceram. Soc. Jpn (Jap.) 106, 811–814 (1998)

    Article  Google Scholar 

  22. Naito, M., Hayakawa, O., Nakahira, K., Mori, H., Tsubaki, J.: Effect of particle shape on the particle size distribution measured with the commercial equipment. Powder Technol. 100, 52–60 (1998)

    Article  Google Scholar 

  23. Naito, M., Nakahira, K., Hotta, T., Ito, A., Yokoyama, T., Kamiya, H.: Microscopic analysis on the consolidation process of granule beds. Powder Technol. 95, 214–219 (1998)

    Article  Google Scholar 

  24. Naito, M., Hotta, T., Abe, H., Shinohara, N., Okumiya, M., Uematsu, K.: Optical characterization of strength-limiting flaws in silicon nitride ceramics prepared with different slurry flocculation conditions. Proc. Br. Ceram. Soc. 61, 119–132 (2000)

    Google Scholar 

  25. Naito, M., Hotta, T., Abe, H., Shinohara, N., Cho, Y.-I., Okumiya, M., Uematsu, K.: Relevance of the fracture strength to process-related defects in alumina ceramics. Mater. Trans. Jpn Inst. Met. 42, 114–119 (2001)

    Google Scholar 

  26. Naito, M., Abe, H., Hotta, T., Shinohara, N., Uematsu, K.: Fracture strength variability of silicon nitride ceramics made by powder compaction. Ceram. Trans. 133, 151–157 (2002). Am. Ceram. Soc

    Google Scholar 

  27. Naito, M., Abe, H.: The micromeritics. Funsai (Jap.) 48, 56–62 (2004)

    Google Scholar 

  28. Nakahira, K., Hotta, T., Naito, M., Shinohara, N., Cho, Y.-I., Katori, S., Emoto, H., Yamada, T., Takahashi, T., Okumiya, M., Kumagai, C., Uematsu, K.: Characterization of coarse particles in alumina powders by wet sieving method. J. Eur. Ceram. Soc. 23, 1661–1666 (2003)

    Article  Google Scholar 

  29. Shinohara, N., Okumiya, M., Hotta, T., Nakahira, K., Naito, M., Uematsu, K.: Formation mechanisms of processing defects and their relevance to the strength in alumina ceramics made by powder compaction process. J. Mater. Sci. 34, 4271–4277 (1999)

    Article  ADS  Google Scholar 

  30. Shinohara, N., Okumiya, M., Hotta, T., Nakahira, K., Naito, M., Uematsu, K.: Effect of seasons on density, strength of alumina. Am. Ceram. Soc. Bull. 78, 81–84 (1999)

    Google Scholar 

  31. Shinohara, N., Okumiya, M., Hotta, T., Nakahira, K., Naito, M., Uematsu, K.: Seasonal variation of microstructure and sintered strength of dry-pressed alumina. J. Am. Ceram. Soc. 82, 3441–3446 (1999)

    Article  Google Scholar 

  32. Shinohara, N., Okumiya, M., Hotta, T., Nakahira, K., Naito, M., Uematsu, K.: Variation of the microstrucuture and fracture strength of cold isostatically pressed alumina ceramics with the alteration of Dewaxing procedures. J. Eur. Ceram. Soc. 20, 843–849 (2000)

    Article  Google Scholar 

  33. Shinohara, N., Katori, S., Okumiya, M., Hotta, T., Nakahira, K., Naito, M., Cho, Y.-I., Uematsu, K.: Effect of heat treatment of alumina granules on the compaction behavior and properties of green and sintered bodies. J. Eur. Ceram. Soc. 22, 2841–2848 (2002)

    Article  Google Scholar 

  34. Shinohara, N., Ohsaka, S., Hotta, T., Abe, H., Naito, M., Uematsu, K.: Relevance of the internal structures to fracture strength of injection molded and sintered silicon nitride ceramics. Adv. Powder Technol. 16, 425–434 (2005)

    Article  Google Scholar 

  35. Somiya, S.,et al.: Handbook of Advanced Ceramics, Vol.1 Materials Science, p. 82. Elsevier/Academic Press, UK (2003)

    Google Scholar 

  36. Uematsu, K., Kim, J.-Y., Miyashita, M., Uchida, N., Saito, K.: Direct observation of internal structure in spray-dried alumina granules. J. Am. Ceram. Soc. 73, 2555–2557 (1990)

    Article  Google Scholar 

  37. Uematsu, K., Zhang, Y., Uchida, N., Hotta, T., Naito, M., Shinohara, N., Okumiya, M.: Structural flaw evaluation in green compacts and ceramics by an optical method – for understanding the origin of strength variation in ceramics. Key Eng. Mat. 161–163, 145–150 (1999)

    Article  Google Scholar 

  38. Uematsu, K., Uchida, N., Kato, Z., Tanaka, S., Hotta, T., Naito, M.: Infrared microscopy for examination of strucuture in spray-dried granules and compacts. J. Am. Ceram. Soc. 84, 254–256 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makio Naito .

Editor information

Editors and Affiliations

Annex 6A

Annex 6A

6.1.1 Weibull Distribution for Ceramic Strength

The Weibull function is a continuous probability distribution function that can be used for many purposes. In materials science, it is often used to present the distribution of life times of objects. For ceramics and other construction materials it is applied to express the results of mechanical strength measurements [17]. Under the name Rosin-Rammler distribution it is one of the 2-parameter model functions used for description of particle size distributions.

In its cumulative form, the function is:

$$ F(x)=1-{e}^{-{\left(x/\lambda \right)}^k} $$
(6.2)

where:

x = random variable (here mechanical strength, e.g. flexural strength)

λ = scale or location parameter of the distribution

k = shape or spread parameter of the distribution (Weibull modulus in case of strength)

The function can be linearized via:

$$ - \ln \left(1-F(x)\right)={\left(x/\lambda \right)}^k $$
(6.3)

to:

$$ \ln \left(\hbox{--} \ln \left(1\hbox{--} \mathrm{F}(x)\right)\right)= k\mathit{\cdotp}\left( ln x\right)\hbox{--} k\mathit{\cdotp}\left( ln\lambda \right) $$
(6.4)

Thus, by fitting the measured data to the model, or plotting ln(– ln(1–F(x))) on the Y-axis against (lnx) on the X-axis of graph paper, the two parameters of the distribution can be easily calculated.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Naito, M. (2014). Ceramics: Effect of Powder and Slurry Properties on Quality. In: Merkus, H., Meesters, G. (eds) Particulate Products. Particle Technology Series, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-00714-4_6

Download citation

Publish with us

Policies and ethics