Skip to main content

Optical Flow Three-Dimensional Interpretation

  • Chapter
  • First Online:
Computer Vision Analysis of Image Motion by Variational Methods

Part of the book series: Springer Topics in Signal Processing ((STSP,volume 10))

  • 1870 Accesses

Abstract

Optical flow is the field of optical velocity vectors of the projected environmental surfaces whenever a viewing system moves relative to the viewed environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.J. Gibson, The perception of the visual world (Houghton Mifflin, Boston, 1950)

    Google Scholar 

  2. J.J. Gibson, Optical motions and transformations as stimuli for visual perception. Psychol. Rev. 64, 288–295 (1957)

    Google Scholar 

  3. K. Prazdny, On the information in optical flows. Comput. Vis. Graph. Image Process. 22, 239–259 (1983)

    Article  Google Scholar 

  4. J.K. Aggarwal, N. Nandhakumar, On the computation of motion from a sequence of images: a review. Proc. IEEE 76, 917–935 (1988)

    Article  Google Scholar 

  5. T. Huang, A. Netravali, Motion and structure from feature correspondences: a review. Proc. IEEE 82, 252–268 (1994)

    Article  Google Scholar 

  6. A. Mitiche, Computational Analysis of Visual Motion (Plenum Press, New York, 1994)

    Book  Google Scholar 

  7. R. Chellapa, A.A. Sawchuk, Digital Image Processing and Analysis: Volume 2: Digital Image Analysis (IEEE Computer Society Press, New York, 1985)

    Google Scholar 

  8. J.W. Roach, J.K. Aggarwal, Determining the movement of objects from a sequence of images. IEEE Trans. Pattern Anal. Mach. Intell. 2(6), 554–562 (1980)

    Article  Google Scholar 

  9. R.Y. Tsai, T.S. Huang, Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 6(1), 13–27 (1984)

    Article  MathSciNet  Google Scholar 

  10. J. Aloimonos, C. Brown, Direct processing of curvilinear sensor motion from a sequence of perspective images, in IEEE Workshop on Computer Vision: Representation and Analysis, Annapolis, MD, 1984, pp. 72–77

    Google Scholar 

  11. S. Negahdaripour, B. Horn, Direct passive navigation. IEEE Trans. Pattern Anal. Mach. Intell. 9(1), 168–176 (1987)

    Article  MATH  Google Scholar 

  12. B. Horn, E. Weldon, Direct methods for recovering motion. Int. J. Comput. Vis. 2(2), 51–76 (1988)

    Article  Google Scholar 

  13. H.C. Longuet-Higgins, K. Prazdny, The interpretation of a moving retinal image. Proc. R. Soc. Lond. B 208, 385–397 (1980)

    Article  Google Scholar 

  14. H.C. Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections. Nature 293, 133–135 (1981)

    Article  Google Scholar 

  15. X. Zhuang, R. Haralick, Rigid body motion and the optical flow image. in First International Conference on Artificial Intelligence Applications, 1984, pp. 366–375

    Google Scholar 

  16. S. Ullman, The interpretation of structure from motion. Proc. R. Soc. Lond. B 203, 405–426 (1979)

    Article  Google Scholar 

  17. B. Horn, B. Schunck, Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  18. S. Solimini, J.M. Morel, Variational Methods in Image Segmentation (Springer, Boston, 2003)

    Google Scholar 

  19. S. Osher, N. Paragios (eds.), Geometric Level Set Methods in Imaging, Vision, and Graphics (Springer, New York, 2003)

    Google Scholar 

  20. G. Aubert, P. Kornpbrost, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations (Springer, New York, 2006)

    Google Scholar 

  21. A. Mitiche, I. Ben Ayed, Variational and Level Set Methods in Image Segmentation (Springer, New York, 2010)

    Google Scholar 

  22. A. Bruss, B. Horn, Passive navigation. Comput. Graph. Image Process. 21, 3–20 (1983)

    Google Scholar 

  23. G. Adiv, Determining three-dimensional motion and structure from optical flow generated by several moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 7(4), 384–401 (1985)

    Article  Google Scholar 

  24. B. Shahraray, M. Brown, Robust depth estimation from optical flow, in International Conference on Computer Vision, 1988, pp. 641–650

    Google Scholar 

  25. D. Heeger, A. Jepson, Subspace methods for recovering rigid motion I: algorithm and implementation. Int. J. Comput. Vis. 7(2), 95–117 (1992)

    Article  Google Scholar 

  26. M. Taalebinezhaad, Direct recovery of motion and shape in the general case by fixation. IEEE Trans. Pattern Anal. Mach. Intell. 14(8), 847–853 (1992)

    Article  Google Scholar 

  27. E. De Micheli, F. Giachero, Motion and structure from one dimensional optical flow, in IEEE International Conference on Computer Vision and, Pattern Recognition, 1994, pp. 962–965

    Google Scholar 

  28. N. Gupta, N. Kanal, 3-D motion estimation from motion field. Artif. Intell. 78, 45–86 (1995)

    Article  Google Scholar 

  29. Y. Xiong, S. Shafer, Dense structure from a dense optical flow, in International Conference on Computer Vision and Image Understanding, 1998, pp. 222–245

    Google Scholar 

  30. Y. Hung, H. Ho, A Kalman filter approach to direct depth estimation incorporating surface structure. IEEE Trans. Pattern Anal. Mach. Intell. 21(6), 570–575 (1999)

    Article  Google Scholar 

  31. S. Srinivasan, Extracting structure from optical flow using the fast error search technique. Int. J. Comput. Vis. 37(3), 203–230 (2000)

    Article  MATH  Google Scholar 

  32. T. Brodsky, C. Fermuller, Y. Aloimonos, Structure from motion: beyond the epipolar constraint. Int. J. Comput. Vis. 37(3), 231–258 (2000)

    Article  MATH  Google Scholar 

  33. H. Liu, R. Chellapa, A. Rosenfeld, A hierarchical approach for obtaining structure from two-frame optical flow, in IEEE Workshop on Motion and Video, Computing, 2002

    Google Scholar 

  34. W. MacLean, A. Jepson, R. Frecher, Recovery of egomotion and segmentation of independent object motion using the em algorithm. British Mach. Vis. Conf. BMVC 94, 13–16 (1994)

    Google Scholar 

  35. S. Fejes,L. Davis, What can projections of flow fields tell us about visual motion, in International Conference on Computer Vision, 1998, pp. 979–986

    Google Scholar 

  36. J. Weber, J. Malik, Rigid body segmentation and shape description from dense optical flow under weak perspective. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 139–143 (1997)

    Article  Google Scholar 

  37. A. Mitiche, S. Hadjres, MDL estimation of a dense map of relative depth and 3D motion from a temporal sequence of images. Pattern Anal. Appl. 6, 78–87 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. H. Sekkati, A. Mitiche, A variational method for the recovery of dense 3D structure from motion. Robotics and Autonomous Systems 55(7), 597–607 (2007)

    Google Scholar 

  39. H. Sekkati, A. Mitiche, Concurrent 3D-motion segmentation and 3D interpretation of temporal sequences of monocular images. IEEE Trans. Image Process. 15(3), 641–653 (2006)

    Google Scholar 

  40. A. Mitiche, H. Sekkati, Optical flow 3D segmentation and interpretation: a variational method with active curve evolution and level sets. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1818–1829 (2006)

    Article  Google Scholar 

  41. H. Sekkati, A. Mitiche, Joint optical flow estimation, segmentation, and 3D interpretation with level sets. Comput. Vis. Image Underst. 103(2), 89–100 (2006)

    Article  Google Scholar 

  42. Y.G. Leclerc, Constructing simple stable descriptions for image partitioning. Int. J. Comput. Vis. 3(1), 73–102 (1989)

    Article  Google Scholar 

  43. S. Vedula, S. Baker, P. Rander, R. Collins, T. Kanade, Three-dimensional scene flow. IEEE Trans. Pattern Anal. Mach. Intell. 27, 475–480 (2005)

    Article  Google Scholar 

  44. J.-P. Pons, R. Keriven, O. Faugeras, G. Hermosillo, Variational stereovision and 3D scene flow estimation with statistical similarity measures, in International Conference on Computer Vision, Nice, France, 2003, pp. 597–602

    Google Scholar 

  45. Y. Zhang, C. Kambhamettu, Integrated 3D scene flow and structure recovery from multiview image sequences, in IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 674–681 (2000)

    Google Scholar 

  46. F. Huguet, F. Devernay, A variational method for scene flow estimation from stereo sequences, in Proceedings of the International Conference on Computer Vision, Rio de Janeiro, Brasil: IEEE, Oct 2007

    Google Scholar 

  47. A. Wedel, C. Rabe, T. Vaudrey, T. Brox, U. Franke, D. Cremers, Efficient dense scene flow from sparse or dense stereo data, in European Conference on Computer Vision (ECCV), Marseille, France, Oct. 2008

    Google Scholar 

  48. F. Raudies, H. Neumann, A review and evaluation of methods estimating ego-motion. Comput. Vis. Image Underst. 116(5), 606–633 (2012)

    Article  Google Scholar 

  49. F. Raudies, H. Neumann, An efficient linear method for the estimation of ego-motion from optical flow, in DAGM-Symposium, 2009, pp. 11–20

    Google Scholar 

  50. G.E. Forsyth, A.A. Malcolm, C.B. Moler, Computer Methods for Mathematical Computations (Prentice Hall, Englewood Cliffs, 1977)

    Google Scholar 

  51. S. Negahdaripour, B. Horn, Direct Passive Navigation (Massachusetts Institute of Technology Memo 821, Cambridge, 1985)

    Google Scholar 

  52. S. Negahdaripour, A. Yuille, Direct Passive Navigation: Analytical Solution for Quadratic Patches (Massachusetts Institute of Technology Memo 876, Cambridge, 1986)

    Google Scholar 

  53. G. Aubert, G. Deriche, P. Kornprobst, Computing optical flow via variational thechniques. SIAM J. Appl. Math. 60(1), 156–182 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  54. H. Sekkati, A. Mitiche, Dense 3D interpretation of image sequences: A variational approach using anisotropic diffusion, in International Conference on Image Analysis and Processing, Mantova, Italy, 2003, pp. 424–429

    Google Scholar 

  55. T. Nir, A.M. Bruckstein, R. Kimmel, Over-parameterized variational optical flow. Int. J. Comput. Vis. 76(2), 205–216 (2008)

    Article  Google Scholar 

  56. R. Deriche, P. Kornprobst, G. Aubert, Optical-flow estimation while preserving its discontinuities: a variational approach, in Asian Conference on Computer Vision, 1995, pp. 71–80

    Google Scholar 

  57. J. Oliensis, A critique of structure-from-motion algorithms. Comput. Vis. Image Underst. 80(2), 172–214 (2000)

    Article  MATH  Google Scholar 

  58. S. Bougnoux, From projective to euclidean space under any practical situation, a criticism of self-calibration, in ICCV, 1998, pp. 790–798

    Google Scholar 

  59. E. Dubois, A projection method to generate anaglyph stereo images, in International Conference on Acoustics, Speech, and Signal Processing, 2001 vol. III, pp. 1661–1664

    Google Scholar 

  60. S. Osher, N. Paragios, Geometric Level Set Methods in Imaging, Vision, and Graphics (Birkhauser, Berlin, 1995)

    Google Scholar 

  61. R. Feghali, A. Mitiche, Fast computation of a boundary preserving estimate of optical flow. SME Vis. Q. 17(3), 1–4 (2001)

    Google Scholar 

  62. J. Stoer, P. Burlisch, Introduction to Numerical Methods, 2nd ed. (Springer, New York, 1993)

    Google Scholar 

  63. P. Ciarlet, Introduction à l’analyse numérique matricielle et à l’optimisation (Masson, Fifth, 1994)

    Google Scholar 

  64. C. Debrunner, N. Ahuja, Segmentation and factorization-based motion and structure estimation for long image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 20(2), 206–211 (1998)

    Article  Google Scholar 

  65. A. Mitiche, On combining stereopsis and kineopsis for space perception, in IEEE Conference on Artificial Intelligence Applications, 1984, pp. 156–160

    Google Scholar 

  66. A. Mitiche, A computational approach to the fusion of stereopsis and kineopsis, in Motion Understanding: Robot and Human Vision, ed. by W.N. Martin, J.K. Aggarwal ( Kluwer Academic Publishers, Norwell1988), pp. 81–99

    Google Scholar 

  67. A. Mitiche, Y. Mathlouthi, I. Ben Ayed, A linear method for scene flow estimation from a single image sequence, in INRS-EMT Technical report, 2011

    Google Scholar 

  68. A. Mitiche, A. Mansouri, On convergence of the Horn and Schunck optical flow estimation method. IEEE Trans. Image Process. 13(6), 848–852 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Mitiche .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mitiche, A., Aggarwal, J. (2014). Optical Flow Three-Dimensional Interpretation. In: Computer Vision Analysis of Image Motion by Variational Methods. Springer Topics in Signal Processing, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-00711-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00711-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00710-6

  • Online ISBN: 978-3-319-00711-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics