Soil and Terroir

  • Edoardo Antonio Costantino CostantiniEmail author
  • Pierluigi Bucelli
Part of the SpringerBriefs in Environment, Security, Development and Peace book series (BRIEFSSECUR, volume 8)


This review aims to draw together the main traits of an interdisciplinary research field that bridges different branches of pedology with crop sciences and food analysis. It introduces the concept of terroir, placing a special emphasis on research that has investigated the role played by soil on terroir recognition. As the availability of water and oxygen are the main drivers of the effect of soil on terroir, a case study is reported that demonstrates the interactions between the soil water regime and vine phenology and evapotranspiration. Other soil functional qualities are reported for wine grapes as well for olive oil, apples, oranges, pomegranates, potatoes, carrots, truffles, beer, cheese, coffee, and tobacco. Soils of the well-acknowledged terroirs are often characterized by a moderate supply of water, oxygen, and nutrient, are probably regulated by a specific biodiversity, and are able to ensure that the target qualitative result is achieved without massive integration of fertilizers. Thus a challenge for soil scientists is to provide farmers with the evidence and the tools to enable them to select, maintain, and carefully support soils of terroir. A special focus is then provided on the new frontiers that soil sciences can offer in this field of research, and in particular on the new materials and methods that can be used to understand and measure the soil influence on wine grape and other quality crops. Advances are demonstrated in: (1) the use of proximal and remote soil sensors, models, and statistical analysis; (2) the spatial and temporal assessment of nutrient availability and soil biology; (3) the adoption of the carbon isotope ratio to assess the stress suffered by the plant during the growing season; and (4) new methodologies to trace the origin of food.


Precision agriculture Mediterranean Vis-NIR NDVI Kriging Metagenomic δ13Strontium 


  1. Almeida, C.M.R., Vasconcelos, S.D., 2001: “ICP-MS Determination of Strontium Isotope Ratio in Wine in Order to be Use as Fingerprint of Its Regional Origin”, in: Journal of Analytical Atomic Spectrometry, 16: 607–11.Google Scholar
  2. Apel, K., Hirt, H., 2004: “Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction”, in: Annual Review of Plant Biology, 55: 373–99.Google Scholar
  3. Augagneur, S., Médina, B., Szpunar, J., Lobinski, R., 1996: “Determination of Rare Earth Elements in Wine by Inductively Coupled Plasma Mass Spectrometry Using a Microconcentric Nebulizer”, in: Journal of Analytical Atomic Spectrometry, 11, 9: 713–21.Google Scholar
  4. Avelino, J., Perriot, J. J., Pineda, C., Guyot, B., Cilas, C, 2001: The Identification of Coffee Terroirs in Honduras: Characterisation of the Environment, Crop Management and the Characteristics of Yield. 19ème Colloque Scientifique International sur le Café, Trieste, Italy, 14–18 mai.Google Scholar
  5. Avelino, J., Barboza, B., Araya, J. C., Fonseca, C., Davrieux, F., Guyot, B., Cilas, C, 2005: “Effects of Slope Exposure, Altitude and Yield on Coffee Quality in Two Altitude Terroirs of Costa Rica, Orosi and Santa Maria de Dota”, in: Journal of Science Food and Agriculture, 85: 1869–76.Google Scholar
  6. Bahrun, A., Jensen, C. R., Asch, F., Mogensen, V. O, 2002: “Drought Induced Changes in xylem pH, Ionic Composition, and ABA Concentration Act as Early Signals in Field-Grown Maize (Zea mays L.)”, in: Journal of Experimental Botany, 53: 251–63.Google Scholar
  7. Bell, S. J., Henschke, P. A, 2005: “Implications of Nitrogen Nutrition for Grapes, Fermentation and Wine”, in: Australian Journal of Grape Wine Research, 11, 3: 242–295.Google Scholar
  8. Bertoldi, D., Larcher, R., Nicolini, G., Bertamini, M., Concheri, G., 2009: “Distribution of Rare Earth Elements in Vitis vinifera L. ‘Chardonnay’ berries”, in: Vitis, 48, 1: 49–51.Google Scholar
  9. Boari, E., Tommasini, S., Mulinacci, N., Mercurio, M., Morra, V., Mattei, M., Conticelli, S., 2008: “87Sr/86Sr of Some Central and Southern Italian Wines and Its Use as Fingerprints for Geographic Provenance. Proceedings di OIV 2008-31st World Congress of Vine and Wine, 6 p.Google Scholar
  10. Bodin, F., Morlat, R., 2003: “Characterizing a Vine Terroir by Combining a Pedological Field Model and a Survey of the Vine Growers in the Anjou Region (France)”, in: Journal of International Science. Vigne Vin, 37, 4: 199–211.Google Scholar
  11. Bonfante, A., Basile, A., Langella, G., Manna, P., Terribile, F., 2011: “A Physically Oriented Approach to Analysis and Mapping of Terroirs”, in: Geoderma, 167–168: 103–117.Google Scholar
  12. Bontempo, L., Camin, F., Marzocco, L., Nicolini, G., Wehrens, R., Ziller, L., Larcher, R, 2011: “Traceability Along the Production Chain of Italian Tomato Products on the Basis of Stable Isotopes and Mineral Composition”, in: Rapid Communications in Mass Spectrometry, 25,7: 899–909.Google Scholar
  13. Bourennane, H., King, D., 2003: Using Multiple External Drifts to Estimate a Soil Variable Geoderma, 114: 1–18.Google Scholar
  14. Bourennane, H., King, D., Couturier, A., 2000: Comparison of Kriging with External Drift and Simple Linear Regression for Predicting Soil Horizon Thickness with Different Sample Densities Geoderma, 97, 255–271.Google Scholar
  15. Bragato, G., Gardin, L., Lulli, L., Raglione, M., 2009: “Edible Truffles (Tuber spp.)”, in: Costantini, E.A.C. (Ed.): Manual of Methods for Soil and Land Evaluation (Science Publishers: Enfield, NH): 254–266.Google Scholar
  16. Bramley, R.G.V., Janik, L.J., 2005: “Precision Agriculture Demands a New Approach to Soil and Plant Sampling and Analysis—Examples from Australia”, in: Communications in Soil Science and Plant Analysis, 36, 9–22.Google Scholar
  17. Bucelli, P., Costantini, E.A.C., Storchi, P., 2010: “It is Possible to Predict Sangiovese Wine Quality Through a Limited Number of Variables Measured on the Vines”, in: Journal International Science Vigne Vin, 44, 4: 207–218.Google Scholar
  18. Bucelli, P., Costantini, E.A.C., Barbetti, R., Franchini, E., 2011: Soil Water Availability in Rainfed Cultivation Affects more than Cultivar some Nutraceutical Components and the Sensory Profile of Virgin Olive Oil”, in: Journal of Agriculture Food and Chemical, 59, 15: 8304–313.Google Scholar
  19. Calò, A., Tomasi, D., Biscaro, S., Costacurta, A., Giorgessi, F., Lorenzoni, A., Menapace, P., Verzè, G., Di Stefano, R., Tosi, E., Benciolini, G., Bertacchini, A., 2002: “Le Vigne Del Soave. Consorzio Tutela Vini Soave e Recioto di Soave”, in: Soave (VR), Italy.Google Scholar
  20. Carey, V.A., Archer, E., Barbeau, G., Saayman, D., 2008: “Viticultural Terroirs in Stellenbosch, South Africa. II. The Interaction of Cabernet-Sauvignon and Sauvignon Blanc with Environment”, in: Journal International Science Vigne Vin, 42, 4: 185–201.Google Scholar
  21. Castelli, F., Costantini, E.A.C., 2009: “Tobacco (Nicotiana tabacum)”, in: Costantini, E.A.C. (Ed.): Manual of Methods for Soil and Land Evaluation, (Science Publishers, Enfield, NH), 211–221.Google Scholar
  22. Castrignanò, A, Costantini, E.A.C., Barbetti, R., Sollitto, D., 2009: “Accounting for Extensive Topographic and Pedologic Secondary Information to Improve Soil Mapping”, in: Catena 77, 28–38.Google Scholar
  23. Chai, Y.,Yan, B., Shi, X., 2009: “Effects of Water and Soil Environment Situation for Apple Quality in Weibei Plateau”, in: Journal of Irrigation and Drainage, 28, 1.Google Scholar
  24. Champagnol, F., 1997: “Caractéristiques édafiques et potentialités qualitatives des terroirs du vignoble languedocien”. in: Atti Colloque international “Les terroirs viticoles”, Angers, 17–18: 259–263.Google Scholar
  25. Chapman, D.M., Roby, G., Ebeler, S.E., Guinard, J.X., Matthews, M.A., 2005: “Sensory Attributes of Cabernet Sauvignon Wines made from Vines with Different Water Status”, in: Australian Journal of Grape Wine Research, 11: 339–347.Google Scholar
  26. Chaves, M., Troncoso, A., Romero, R., Prieto, J., Linan, J., 1976, “Estudio de los Caracteres Optimos de los Suolos de Olivar en Diferentes Zonas de Andalucia Occidental, in: Nutricion del olivo, Sevilla.Google Scholar
  27. Choné, X., Van Leeuwen, C., Chéry, P., Ribéreau-Gayon, P., 2001: “Terroir Influence on Water Status and Nitrogen Status of Non-Irrigated Cabernet Sauvignon (Vitis vinifera): Vegetative Development, must and Wine Composition”, in: S Af J Enol Vitic, 22, 1: 8–15.Google Scholar
  28. Clement, W.P., Ward, A., 2008, “GPR Surveys Across a Prototype Surface Barrier to Determine Temporal and Spatial Variations in Soil Moisture Content, Chapter 23”, in: Allred, B.J., Ehsani, M.R., Daniels, J.J. (Eds.): The Handbook of Agricultural Geophysics, American Society of Agricultural Engineers (US: CRC Press): 305–315.Google Scholar
  29. Comeau, L.P., Krasilnikov, P., 2006: “Effect of Soil Properties on the Quality and Productivity of Coffee in Mountainous Regions of Sierra Madre del Sur (Southern México), 18th World Congress of Soil Science”. July 9–15 (Philadelphia: Pennsylvania, USA).Google Scholar
  30. Conan, C., de Marsily, G., Bouraoui, F., Bidoglio, G., 2003: “A Long-Term Hydrological Modelling of the Upper Guadiana River Basin (Spain)”, in: Physics and Chemistry of the Earth, 28,4–5, 193–200.Google Scholar
  31. Cooper, R. M., Williams, J. S., 2004: “Elementar Sulphur as an Induced Antifungal Substance in Plant Defence”, in: Journal of Experimental Botany, 55, 1974–1953.Google Scholar
  32. Costantini, E.A.C., Campostrini, F., Arcara, P.G., Cherubini, P., Storchi, P., Pierucci, M., 1996: “Soil and Climate Functional Characters for Grape Ripening and Wine Quality of “Vino Nobile di Montepulciano”, in: Acta Hort, 427 ISHS,:45–55.Google Scholar
  33. Costantini, E.A.C., Pellegrini, S., Vignozzi, N., Ciampalini, R., Magini, S., Barbetti, R., 2002: “Using Different Methods for Calibrating Field Characterisation of Soil Hydrological Qualities for the Vine and Olive Tree Zoning”, in: M. Pagliai, R. Jones (Eds.): Sustainable Land Management-Environmental Protection: A Soil Physical Approach. Advances in Geoecology, 35: 101–114.Google Scholar
  34. Costantini, E.A.C., Barbetti, R., Bucelli, P., L’Abate, G., Lelli, L., Pellegrini, S., Storchi, P., 2006: Land Peculiarities of the Vine Cultivation Areas in the Province of Siena (Italy), with Indications Concerning the Viticultural and Oenological Results of Sangiovese Vine. in:Italiana Journal of Geoscience (Boll. Soc. Geo. It.). 6,147–159.Google Scholar
  35. Costantini, E.A.C., Barbetti, R., Bucelli, P., L’Abate, G. Pellegrini, S., Storchi, P., 2008: “Scale Dependence of Soil and Climate Functional Characteristics for Qualitative Sangiovese Vine Production”, Proc 31^ OIV Congress Verona, CD-rom computer file”, in: Organisation International Vigne et Vin (Paris, France).Google Scholar
  36. Costantini, E. A. C., Pellegrini, S., Bucelli, P., Storchi, P., Vignozzi, N., Barbetti, R., Campagnolo, S., 2009: “Relevance of the Lin’s and Host hydropedological Models to Predict Grape Yield and Wine Quality”, in: Hydrology and Earth System Sciences, 13: 1635–1648.Google Scholar
  37. Costantini, E. A. C., Pellegrini, S., Bucelli, P., Barbetti, R., Campagnolo, S., Storchi, P., Magini, S., Perria, R., 2010: “Mapping Suitability for Sangiovese Wine by Means of δ13C and Geophysical Sensors in Soils with Moderate Salinity”, in: European Journal of Agronomy, 33, 208–17.Google Scholar
  38. Costantini, E.A.C., Bucelli, P., Priori, S., 2012: Quaternary Landscape History Determines the Soil Functional Characters of Terroir. Quaternary International, 265, 63–73. doi: 10.1016/j.quaint.2011.08.021.
  39. Cousin, I., Besson, A., Bourennane, H., Pasquier, C., Nicoullaud, B., King, D., Richard, G., 2009: “From Spatial-Continuous Electrical Resistivity Measurements to the Soil Hydraulic Functioning at the Field Scale”, in: C.R. Geoscience, 341: 859–867.Google Scholar
  40. Davenport, J.R., Bramley, R.G.V., 2007: Western Nutrient Management Conference, 7 (Salt Lake City, UT) 25–32.Google Scholar
  41. De Benedetto, D., Castrignanò, A., Sollitto, D., Modugno, F., Buttafuoco, G., Lo Papa, G (Ed.), 2012; Integrating Geophysical and Geostatistical Techniques to Map the Spatial Variation of Clay Geoderma 171–172: 53–63.Google Scholar
  42. De Biasio, M., Arnold, T., Leitner, R., McGunnigle, G., Meester, R., 2010: “UAV-Based Environmental Monitoring Using Multi-Spectral Imaging Proceedings of SPIE—The International Society for Optical Engineering, 7668.Google Scholar
  43. Deloire, A., Vaudour, E., Carey, V., Bonnardot, V., Van Leeuwen, C., 2005: “Grapevine Responses to Terroir: a global approach”, Journal of International Science Vigne Vin, 4: 149–162.Google Scholar
  44. Deluc, L.G., Quilici, D.R., Decendit, A., Grimplet, J., Wheatley, M.D., Schlauch, K.A., Mérillon, J.M., (…), Cramer, G.R., 2009: “Water Deficit Alters Differentially Metabolic Pathways Affecting Important Flavour and Quality Traits in Grape Berries of Cabernet Sauvignon and Chardonnay. BMC Genomics, 10, art, 212.Google Scholar
  45. Deschepper, G., Cassassolles, X., Dabas, M., Pernet D., 2006: Complémentarité des Mesures de Résistivité Electrique des Sols et du ΔC13 du moût dans l’étude et la valorisation des terroirs viticoles. VIth International terroir Congress, Bordeaux, 232–236.Google Scholar
  46. Dick, R.P., 1997: “Soil Enzyme Activity as Integrative Indicators of Soil Health”, in: C.E., Doube, B., and Gupta, V. (Eds.) Biological Indicators of Soil Health; Pankhurst (CAB: Wallingford, New York) 121–156.Google Scholar
  47. Doolittle, J.A., Petersen, M., Wheeler, T. 2001: “Comparison of Two Electromagnetic Induction Tools in Salinity Appraisals”, in: Journal of Soil and Water Conservation, 56: 257–262.Google Scholar
  48. Doolittle, J.A., Indorante, S.J., Potter, D.K., Hefner, S.G., McCauley, W.M., 2002: “Comparing Three Geophysical Tools for Locating Sand Blows in Alluvial Soils of Southeast Missouri”, Journal of Soil and Water Conservation, 57: 175–182.Google Scholar
  49. FAO, IUSS, ISRIC 2006: “World Reference Base for Soil Resource in World Soil Resource Report” 103 (FAO, Rome, Italy) 132.Google Scholar
  50. Fleming, K.L., Westfall, D.G., Wiens, D.W., Brodahl, M.C., 2000: “Evaluating Farmer Defined Management Zone Maps for Variable Rate Fertilizer Application”, in: Precision Agriculture, 2, 2: 201–215.Google Scholar
  51. Fortunato, G., Mumic, k., Wunderly, S., Pillonell, L., Bossett, J.O., Gremaud, G., 2004: “Application of Strontium Isotope Abundance Ratios Measured by MC-ICP-MS for Food Authentication”, in: Journal of Analysis Atomic Spectrometry, 19: 227–234.Google Scholar
  52. Franchini, E., Cimato, A., Costantini, E.A.C., 2009: “Olive Tree (Olea europea L.). In: Costantini E.A.C. (Ed.) Manual of Methods for Soil and Land Evaluation (Science Publishers, Enfield, NH, USA) 402–449.Google Scholar
  53. Freeman, B.M., Kliewer, W.M., Stern, P., 1982: “Influence of Windbreaks and Climatic Region on Diurnal Fluctuation of Leafwater Potential, Stomatal Conductance, and Leaf Temperature of Grapevines”, in: American Journal of Enol Vitic, 33: 233–236.Google Scholar
  54. Fregoni, M., 2005: “Viticoltura di qualità. Phytoline, Affi (VR).Google Scholar
  55. Gao, Y., Shen, J., Liu, W., Shi, Y., 2008: “Relationship Between Pomegranate Quality and Geochemical Element Characteristics in Rock and Soil in Mountain Area of Yuanshi County”, in: Chinese Journal of Eco-Agriculture.Google Scholar
  56. Garland, J.L., Mills, A.L., 1991: “Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Utilization”, in: Applied and Environmental Microbiology, 57, 8: 2351–359.Google Scholar
  57. Grappin, R., Coulon, J. B., 1996: “Local production, milk and cheese: some comments. 3èmes rencontres autour des recherches sur les ruminants” (Paris, France) 4 et 5 december.Google Scholar
  58. Hajibabaei, M., Singer, G.A.C., Hebert, P.D.H, Hickey, D.A., 2007: “DNA Barcoding: How it Complements Taxonomy, Molecular Phylogenetics and Population Genetics”, in: Science Direct, 23, 4: 167–172.Google Scholar
  59. Hale, C.R., 1977: “Relation between Potassium and the Malate and Tartrate Contents of Grape Berries”, in: Vitis, 16: 9–19.Google Scholar
  60. He, Z., Gentry, T.J., Schadt, C.W., Wu, L., Liebich, J., Chong, S.C., Huang, Z., (…), Zhou, J., 2007: “ GeoChip: A Comprehensive Microarray for Investigating Biogeochemical, Ecological and Environmental Processes”, in: ISME Journal, 1, 1: 67–77.Google Scholar
  61. He, Z., Van Nostrand, J.D., Deng, Y., Zhou, J., 2011: “Development and Applications of Functional Gene Microarrays in the Analysis of the Functional Diversity, Composition, and Structure of Microbial Communities”, in: Frontiers of Environmental Science and Engineering in China, 5, 1: 1–20.Google Scholar
  62. Hirschi, K.D., 2004: “The Calcium Conundrum, Both Versatile Nutrient and Specific Signal”, in: Plant physiology, 136: 2438–1305.Google Scholar
  63. Johnson, L. F., Roczen, D. E., Youkhana, S. K., Nemani, R. R., Bosch, D. F., 2003: “Mapping Vineyard Leaf Area with Multispectral Satellite Imagery”, in: Computers and Electronics in Agriculture, 38, 1: 33–44.Google Scholar
  64. Kao, Y.Y., Harding, SA., Tsai, CJ., 2002: “Differential Expression of Two Distinct Phenylalanine Ammonia-Lyase Genes in Condensed Tannin-Accumulating and Lignifying Cells of Quaking Aspen”, in: Plant Physiology. 130: 756–760.Google Scholar
  65. Karoui, R, De Baerdemaeker, J., 2007: “A Review of Analytical Methods Coupled with Chemometrics Tools for the Determination of the Quality and Identity of Dairy Products”, in: Food Chemical, 102: 621–40.Google Scholar
  66. Kelly, S., Heaton, K., Hoogerwerff, J., 2005: “Tracing the Geographical Origin of Food: the Application of Multi-Element and Multi-Isotope Analyses”, in: Trends in Science and Technology, 16: 555–67.Google Scholar
  67. Kladivko E.J., 2001: "Tillage systems and soil ecology", in: Soil and Tillage Research, 61,1–2: 61–76.Google Scholar
  68. Kopriva, S., 2006: “Regulation of Sulphur Assimilation in Arabidopsis and Beyond”, in: Annals of Botany 97: 479–95.Google Scholar
  69. Kress, W.J., Erickson, D.L., 2008: “DNA Barcodes: Genes, Genomics, and Bioinformatics”, in: PNAS 105, 8: 2761–762.Google Scholar
  70. Krieger, F., Malila, W., Nalepka, R., Richerdson, W., 1969: “Preprocessing Transformations and Their Effects on Multispectral Recognition”, in: Proceedings of the 6th International Symposium on Remote Sensing of Environment (University of Michigan, USA): 97–131.Google Scholar
  71. Kudo, T., Kiba, T., Sakakibara, H., 2010: “Metabolism and Long-Distance Translocation of Cytokinins”, in: Journal of Integrative Plant Biol 52: 53–60.Google Scholar
  72. Lanyon, D.M., Cass, A., Hansen, D., 2004: “The Effect of Soil Properties on Vine Performance”, in: CSIRO Land and Water Technical Report No. 34/04.Google Scholar
  73. Lebon, E., Dumas, V., Pieri, P., Schultz, H.R., 2003: “Modelling the Seasonal Dynamics of the Soil Water Balance of Vineyards”, in: Functional Plant Biology, 30, 6: 699–710.Google Scholar
  74. Lulli, L., 2004: “Il suolo e la qualità dei prodotti. Bollettino della Società Italiana della Scienza del suolo”, 53: 21–24.Google Scholar
  75. Lulli, L., Palchetti, E., Vecchio, G., Caruso, A.D., 2009: Potato (Solanum tuberosum L.). In: Costantini, E.A.C., (Ed.) Manual of Methods for Soil and Land Evaluation (Science Publishers, Enfield, NH, USA): 197–210.Google Scholar
  76. Mackenzie, D.E., 2011: “Digital terroir” Geoscientific technologies applied to viticultural site characterisation and varietal matching [Online]
  77. Maltman, A., 2004: “Wine, Beer and Whisky: the Role of Geology”, in: Geology Today, 19: 22–29.Google Scholar
  78. Maltman, A., 2008: “The Role of Vineyard Geology in Wine Typicity”, in: Journal of Wine Research, 19, 1: 1–17.Google Scholar
  79. McBratney, A.B., Odeh, I.O.A., Bishop, T.F.A., Dunbar, M.S., Shatar, T.M., 2000: “An Overview of Pedometric Techniques for Use in Soil Survey”, in: Geoderma, 97: 293–327.Google Scholar
  80. Meinert, L.D., Busacca, A.J., 2000: “Geology and Wine 3: Terroirs of the Walla Valley Appellation, South eastern” (Washington State, USA). Geoscience Canada, 27: 149–170.Google Scholar
  81. Mocali, S., Benedetti, A., 2010: “Exploring Research Frontiers in Microbiology: the Challenge of Metagenomics in Soil Microbiology”, in: Research Microbiology 161, 6: 497–505.Google Scholar
  82. Monnet, J.C., Berodier, F., Badot, P.M., 2000: “Characterization and Localization of a Cheese Georegion Using Edaphic Criteria (Jura Mountains, France)”, in: Journal of Dairy Science: 1692–1704.Google Scholar
  83. Montagnon, C., 2006: “Coffee: Terroirs and Qualities”, in: Montagnon (Ed.): 172.Google Scholar
  84. Morari, F., Castrignanò, A., Pagliarin, C., 2009: “Application of Multivariate Geostatistics in Delineating Management Zones within a Gravelly Vineyard Using Geo-Electrical Sensors”, in: Computers and Electronics in Agriculture 68, 97–107.Google Scholar
  85. Morlat, R., Bodin, F., 2006: “Characterization of Viticultural Terroirs Using a Simple Field Model Based on Soil Depth-II, Validation of the Grape Yield and Berry Quality in the Anjou Vineyard (France)”, in: Plant and Soil, 281,1–2: 55–69.Google Scholar
  86. Myburgh, P.A., Van Zuyl, J.L., Conradie, W.J., 1996: “Effect of Soil Depth on Growth and Water Consumption of Young Vitis Vinifera L. cv. Pinot Noir”, in: South African Journal of Enol Vitic, 17: 53–62.Google Scholar
  87. Nendel, C., Kersebaum, K.C., 2004: “A Simple Model Approach to Simulate Nitrogen Dynamics in Vineyard Soils”, in: Ecological Modelling, 177, 1–2: 1–15.Google Scholar
  88. Nendel, C., Reuter, S., 2007: “Soil Biology and Nitrogen Dynamics of Vineyard Soils as Affected by a Mature Biowaste Compost Application”, in: Compost Science and Utilization, 15, 2: 70–77.Google Scholar
  89. Nikolaou, N., Magdalini, N., Koukourikou, A., Karagiannidis, N., 2000: “Effects of Various Rootstocks on Xylem Exudates Cytokinin Content, Nutrient Uptake and Growth Patterns of Grapevine Vitis Vinifera L. cv. Thompson Seedless”, in: Agronomie, 20: 363–373.Google Scholar
  90. Oddone, M., Aceto, M., Baldizzone, M., Musso, D., Osella, D., 2009: “Authentication and Traceability Study of Hazelnuts from Piedmont, Italy”, in: Journal of Agricultural Food Chemical, 9: 3404–408.Google Scholar
  91. Odeh, O.A., McBratney, A.B., Chittleborough, D., 1995: “Further Results on Prediction of Soil Properties from Terrain Attributes: Heterotopic Cokriging and Regression-Kriging”, in: Geoderma, 67: 215–226.Google Scholar
  92. OIV (International Organisation of Vine and Wine) 2010. Resolution OIV/Viti 333/2010 Definition of vitivinicultural “Terroir”. The General Director of the OIV, General assembly Tbilisi (Georgia) 25th June 2010: 1.Google Scholar
  93. Palliotti, A., Silvestroni, O., Petoumenou, D., Vignaroli, S., Berrios, J.G., 2008: “Evaluation of Low-Energy Demand Adaptive Mechanisms in Sangiovese Grapevine During Drought”, in: Journal International Science Vigne Vin, 42, 1: 41–47.Google Scholar
  94. Panont, C.A., Bogoni, M., Montoldi, A., Scienza, A., 1997: “Improvement of Sparkling Wines Production by a Zoning Approach in Franciacorta (Lombardy, Italy)”, In: Acts Colloque international “Les terroirs viticoles”, Angers, 17–18 juillet 1996, 454–460.Google Scholar
  95. Pedroso, M., Taylor, J., Tisseyre, B., Charnomordic, B., Guillaume, S., 2010: “A Segmentation Algorithm for the Delineation of Agricultural Management Zones”, in: Computers and Electronics in Agriculture, 70, 1: 199–208.Google Scholar
  96. Peyrot des Gachons, C., Van Leeuwen, C., Tominaga, T., Soyer, J.P., Gaudillère, J.P., Dubourdieu, D., 2005: “Influence of Water and Nitrogen Deficit on Fruit Ripening and Aroma Potential of Vitis Vinifera L. cv Sauvignon Blanc in Field Conditions”, in: Journal of Science Food Agriculture, 85: 73–85.Google Scholar
  97. Poni, S., Bernizzoni, F., Civardi, S., 2007: “Response of Sangiovese Grapevines to Partila Root-Zone Drying: Gas-Exchange, Growth and Grape Composition”, in: Scientia Horticolturae, 114: 96–103.Google Scholar
  98. Priori, S., Costantini, E.A.C., Capezzuoli, E., Protano, G., Hilgers, A., Sauer, D., Sandrelli, F., 2008: “Pedostratigraphy of Terra Rossa and Quaternary Geological Evolution of a Lacustrine Limestone Plateau in Central Italy”, in: Journal Plant Nutr Soil Science, 171:509–523.Google Scholar
  99. Priori, S., Martini, E., Costantini, E.A.C., 2010: “Three Proximal Sensors for Mapping Skeletal Soils in Vineyards”, in: Proceedings of 19th World Congress of Soil Science, (Brisbane: Australia), CD-ROM.Google Scholar
  100. Priori, S., Martini, E., Andrenelli, M.C., Magini, S., Agnelli, A.E., Bucelli, P., Biagi, M., Pellegrini, S., Costantini, E.A.C., 2013: "Improving Wine Quality through Harvest Zoning and Combined Use of Remote and Soil Proximal Sensing". in: Soil Science Social American Journal, 77(3). doi: 10.2136/sssaj2012.0376
  101. Ramos, M.C., Mulligan, M., 2005: “Spatial Modelling of the Impact of Climate Variability on the Annual Soil Moisture Regime in a Mechanized Mediterranean Vineyard”, in: Journal of Hydrology, 306, 1–4: 287–301.Google Scholar
  102. Rossano, E.C, Szilágyi, Z., Malori, A., Pocsfalvi, G., 2007: “Influence of Winemaking Practices on the Concentration of Rare Earth Elements in White Wines Studied by Inductively Coupled Plasma Mass Spectrometry”, in: Journal Agriculture Food Chemical, 55, 2: 311–317.Google Scholar
  103. Sacchi, R., Paolillo, L., 2006: “NMR for Food Quality and Traceability”. In: Nollet, L. M. L., Toldrà F., (Eds.) Advances in Food Diagnostics, (Blackwell Publishing).Google Scholar
  104. Saey, T., Simpson, D., Vermeersch, H., Cockx, L., Van Meirvenne, M., 2009: “Comparing the EM38-DD and Dualem-21S Sensors to Depth-to-Clay Mapping”, in: Soil Science Social American Journal, 73: 7–12.Google Scholar
  105. Sbaraglia, M., Lucci, E., 1994: Guida all’ interpretazione delle analisi del terreno ed alla fertilizzazione, (Studio Pedon, Roma) 123.Google Scholar
  106. Scacco, A., Verzera, A., Lanza, C.M., Sparacio, A., Gennam, G., Raimondi, S., Tripodi, G., Dima, G., 2010: “Influence of Soil Salinity on Sensory Characteristics and Volatile Aroma Compounds of Nero d’ Avola Wine”, in: American Journal Enol Vitic, 61: 498–505.Google Scholar
  107. Scotti, C., 2006: Emilia-Romagna: dalla conoscenza del suolo alla qualità del vino. Il suolo, 1–3.Google Scholar
  108. Seguin, G., 1986: “Terroirs and pedology of vine growing”, in: Experientia, 42: 861–873.Google Scholar
  109. Srinivasan, C., Mullins, M.G., 1980: “Flowering in Vitis: effects of genotype on cytokinin-induced conversion of tendrils into inflorescences”, in: Vitis, 19: 293–300.Google Scholar
  110. Stenberg, B., Viscarra Rossel, R.A., Mouazen, A.M., Wetterlind, J., 2010: “Visible and Near Infrared Spectroscopy in Soil Science”, in: Advances in Agronomy, 107, C: 163–215.Google Scholar
  111. Stoll, M., Stuebinger, M., Lafontaine, M., Schultz, H. R., 2008: “Radiative and Thermal Effects on Fruit Ripening Induced by Differences in Soil Colour”, in: VII International terroir Congress (Nyon).Google Scholar
  112. Storchi, P., Costantini, E.A.C., Bucelli, P., 2005: “The Influence of Climate and Soil on Viticultural and Oenological Parameters of Sangiovese Grapevine Under Non-Irrigated Conditions”, in: Acta Horticulture, 689, 333–40.Google Scholar
  113. Sudduth, K.A., Kitchen, N.R., Wiebold, W.J., Batchelor, W.D., Bollero, G.A., Bullock, D.G., Clay, D.E., Palm, H.L., Pierce, F.J., Schuler, R.T., Thelen, K.D., 2005: “Relating Apparent Electrical Conductivity to Soil Properties Across the North-Central USA”, in: Computers and Electronics in Agriculture, 46: 263–283.Google Scholar
  114. Taylor, J.A., Coulouma, G., Lagacherie, P., Tisseyre, B., 2009: “Mapping Soil Units Within a Vineyard Using Statistics Associated with High-Resolution Apparent Soil Electrical Conductivity Data and Factorial Discriminant Analysis Geoderma 153, 1–2: 278–284.Google Scholar
  115. Thiel, G., Geisler, G., Blechschmidt, I., Danzer, K., 2004: “Determination of Trace Elements in Wines and Classification According to Their Provenance”, in: Analytical and Bioanalytical chemistry, 378, 6: 1630–1636.Google Scholar
  116. Tittarelli, F., Neri, U., Poletti, P., La Certosa, G., Raus, R., 2002: “Monitoraggio dello stato nutrizionale dell’olivo”, in: L’Informatore Agrario, 44: 37–51.Google Scholar
  117. Trégoat, O., Gaudillère, J.P., Choné, X., Van Leeuwen, C., 2002: “The Assessment of Vine Water and Nitrogen Uptake by Means of Physiological Indicators, Influence on Vine Development and Berry Potential (Vitis vinifera L. cv. Merlot, 2000, Bordeaux), in: Journal International ScienceVigne Vin, 36, 3: 133–142.Google Scholar
  118. Tromp-van Meerveld, H.J., McDonnell, J.J., 2009: “Assessment of Multi-Frequency Electromagnetic Induction for Determining Soil Moisture Patterns at Hillslope Scale”, in: Journal of Hydrology, 368: 56–67.Google Scholar
  119. Valdes-Gomez, H., Celette, F., De Cortazar-Atauri, I.G., Jara-Rojas, F., Ortega-Farias, S., Gary, C., 2009: “Modelling Soil Water Content and Grape Vine Growth and Development with the Stics Crop-Soil Model Under Two Different Water Management Strategies”, in: Journal International Science Vigne Vin, 43, 1: 13–28.Google Scholar
  120. Van Leeuwen, C., Seguin, G., 1997: “Incidence de la nature du sol et du cépage sur la maturation du raisin, à Saint emilion, en 1995”, In: Colloque international “Les terroirs viticoles”, 17–18 juillet 1996. Angers, 154–157.Google Scholar
  121. Van Leeuwen, C., Seguin, G., 2006: “The Concept of Terroir in Viticulture”, in: Journal Wine Research, 17, 1: 1–10.Google Scholar
  122. Van Leeuwen, C., Gaudillere, J.P., Tregoat, O., 2001: “Evaluation du régime hydrique de la vigne à partir du rapport isotopique 12C/13C”, in: Journal International Science Vigne Vin, 4: 195–205.Google Scholar
  123. Van Leeuwen, C., Tregoat, O., Chone, X., Jaeck, M.E., Rabusseau, S., Gaudillere, J.P., 2003: “Le suivi du régime hydrique de la vigne et son incidence sur la maturation du raisin”, in: Bull. O.I.V. 867, 868: 367–379.Google Scholar
  124. Van Leeuwen, C., Friant, P.,Choné, X., Tregoat, O., Koundouras, S., Dubourdieu, D., 2004: “Influence of Climate, Soil, and Cultivar on Terroir”, in: American Journal Enol Vitic, 55, 3: 207–217.Google Scholar
  125. Van Leeuwen, C., Tregoat, O., Choné, X., Bois, B., Pernet, D., Gaudillere, J.P., 2009: “Vine Water Status is a Key Factor in Grape Ripening and Vintage Quality for Red Bordeaux Wine. How Can it be Assessed for Vineyard Management Purposes?” in: Journal International Science Vigne Vin, 43, 3: 121–134.Google Scholar
  126. Vaudour, E. 2002: “The Quality of Grapes in Relation to Geography: Notions of Terroir at Various Scales”, in: Journal Wine Research, 13, 2: 117–141.Google Scholar
  127. Vaudour, E., 2003: “Les Terroirs Viticoles”, Dunod (Ed.). Définitions, caractérisation et protection, Paris, France.Google Scholar
  128. Vavoulidou, E., Avramides, E.J., Dimirkou, A., Papadopoulos, P., 2006: “Influence of Different Cultivation Practices on the Properties of Volcanic Soils on Santorini Island”, in: Greece. Communications in Soil Science and Plant Analysis, 37, 15–20: 2857–866.Google Scholar
  129. Villeneuve, F., 1997: “Growing soil and vegetable quality. Example: the carrot./terroir et qualité des légumes. Exemple: la carotte. Infos (Paris)”, 136:41–44.Google Scholar
  130. Viscarra Rossel,. R.A., Cattle S.R., Ortega A., Fouad Y., 2009: “In situ Measurements of Soil Colour, Mineral Composition and Clay Content by Vis-NIR Spectroscopy”, in: Geoderma, 150, 3–4: 253–66.Google Scholar
  131. White, R. E., 2003: “Soils for Fine Wines” (New York: Oxford University Press).Google Scholar
  132. White, R., Balachandra, L., Edis, R., Chen, D., 2007: “The Soil Component of Terroir”, in: Journal of International Science Vigne Vin, 41, 1: 9–18.Google Scholar
  133. Witbooi, E.H., Carey, V.A., Hoffman, J.E., Strever, A.E., 2008a: “The Relationship Between Soil Surface Colour and the Performance of Vitis vinifera L. Cv. Cabernet Sauvignon in Stellenbosch Wine of Origin District. I. Vegetative Growth”, 31st World Congress of Vine and Wine and the 6th General Assembly of the OIV, Verona, Italy.Google Scholar
  134. Witbooi, E.H., Carey, V.A., Hoffman, J.E., Strever, A.E., 2008b: “The Relationship Between Soil Surface Colour and the Performance of Vitis vinifera L. Cv. Cabernet Sauvignon in Stellenbosch Wine of Origin District. II. Yield, Berry—and Wine Composition”, 31st World Congress of Vine and Wine and the 6th General Assembly of the OIV, Verona, Italy.Google Scholar
  135. Wong, M.T.F., Harper, R.J., 1999: “Use of on-Ground Gamma-Ray Spectrometry to Measure Plant-Available Potassium and Other Topsoil Attributes”, in: Australian Journal of Soil Research, 37: 267–277.Google Scholar
  136. Yadessa, A., Burkhardt, J., Denich, M., Woldemariam, T., Bekele, E., 2008: “Influence of Soil Properties on Cup Quality of Wild Arabica Coffee in Coffee Forest Ecosystem of SW Ethiopia”, ASIC Conference Proceedings, Campinas 2008.Google Scholar
  137. Zhang, J., 1966: “Relation Between Orange Quality and Geochemical Background of Soil”, in: Hunan Geology.Google Scholar
  138. Zhang, J., Davies, W.J., 1987: “Increased Synthesis of ABA in Partially Dehydrated Root Tips and ABA Transport from Roots to Leaves”, in: Journal of Experimental Botany, 38: 2015–23.Google Scholar
  139. Zhang, J., Davies, W.J., 1989: “Abscisic Acid Produced in Dehydrating Roots May Enable the Plant to Measure the Water Status, in: Plant Cell and Environment, 12: 73–81.Google Scholar
  140. Zhou, H., Liu, J., 1997: “The determination of rare earth elements in plant foods by ICP-MS”, in: Atomic Spectroscopy, 18, 6: 192–94.Google Scholar
  141. Zhou, Q., Kang, S., Zhang, L., Li, F., 2007: “Comparison of APRI and Hydrus-2D Models to Simulate Soil Water Dynamics in a Vineyard Under Alternate Partial Root Zone Drip Irrigation”, in: Plant and Soil, 291, 1–2: 211–23.Google Scholar
  142. Zsófi, Z.S., Gál, L., Szilágyi, Z., Szűcs, E., Marschall, M., Nagy, Z., Bálo, B., 2009: “Use of Stomatal Conductance and Pre-dawn Water Potential to Classify Terroir for the Grape Variety Kékfrankos”, in: Australian Journal Grape and Wine Research, 15, 1: 36–47.Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Edoardo Antonio Costantino Costantini
    • 1
    Email author
  • Pierluigi Bucelli
    • 1
  1. 1.Consiglio per la ricerca e la sperimentazione in agricoltura, CRA—Research Centre for Agrobiology and PedologyFlorenceItaly

Personalised recommendations