Modelling Space Perception in Urban Planning: A Cognitive AI-Based Approach

  • Dino Borri
  • Domenico Camarda
Part of the Studies in Computational Intelligence book series (SCI, volume 489)


The study deals with cooperative space conceptualization by humans according to the AI-based cognitive approach and the urban-planning approach of architects and planners. It carries out the diagnosis and the control of example spaces in known urban environments. The paper is oriented toward suggesting system architectures to let spatial agents add structuring degrees to navigated urban spaces and challenge relevant disorientation conditions.

The methodology draws on ontology-based text-mining analysis and statistical interpretation applied to university-class questionnaire surveys, exploring behaviours in human interaction with a space. After an introduction, a case-based discussion of the cooperative conceptualization and representation of space is carried out. The third section shows the ontological results of the case-study, with general results and follow-up discussed in the concluding section.


Decision support Spatial cognition Environmental planning Space ontology Multi agent systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garling, T., Evans, G.W.: Environment, Cognition, and Action: An Integrated Approach. Oxford University Press, New York (1991)Google Scholar
  2. 2.
    Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison-Wesley, London (1999)Google Scholar
  3. 3.
    Tversky, B., Hard, B.M.: Embodied and disembodied cognition: Spatial perspective-taking. Cognition 110, 124–129 (2009)CrossRefGoogle Scholar
  4. 4.
    Goodman, N.: The Structure of Appearance. Harvard UP, Cambridge (1951)Google Scholar
  5. 5.
    Hirtle, S.C.: Neighborhoods and landmarks. In: Duckham, M., Goodchild, M.F., Worboys, M.F. (eds.) Foundations of Geographic Information Science, pp. 191–230. Taylor & Francis, London (2003)CrossRefGoogle Scholar
  6. 6.
    Borri, D., Camarda, D.: The cooperative conceptualization of urban spaces in AI-assisted environmental planning. In: Luo, Y. (ed.) CDVE 2009. LNCS, vol. 5738, pp. 197–207. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Borri, D., Camarda, D., Stufano, R.: Memory and creativity in cooperative vs. non cooperative spatial planning and architecture. In: Luo, Y. (ed.) CDVE 2010. LNCS, vol. 6240, pp. 56–65. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Kelly, D.M., Bischof, W.F.: Orienting in virtual environments: How are surface features and environmental geometry weighted in an orientation task? Cognition 109, 89–104 (2008)CrossRefGoogle Scholar
  9. 9.
    Danziger, D., Rafal, R.: The effect of visual signals on spatial decision making. Cognition 110, 182–197 (2009)CrossRefGoogle Scholar
  10. 10.
    Wooldridge, M.: An Introduction to Multi-Agent Systems. Wiley, London (2002)Google Scholar
  11. 11.
    Day, S.B., Bartels, D.M.: Representation over time: The effects of temporal distance on similarity. Cognition 106, 1504–1513 (2008)CrossRefGoogle Scholar
  12. 12.
    Khakee, A., Barbanente, A., Camarda, D., Puglisi, M.: With or without? Comparative study of preparing participatory scenarios using computer-aided and traditional brainstorming. Journal of Future Research 6, 45–64 (2002)Google Scholar
  13. 13.
    Simon, H.A.: The Sciences of the Artificial. MIT Press, Cambridge (1969)Google Scholar
  14. 14.
    Shirali, S., Vasudeva, H.: Metric Spaces. Springer, London (2005)Google Scholar
  15. 15.
    Borri, D., Camarda, D.: Spatial ontologies in multi-agent environmental planning. In: Yearwood, J., Stranieri, A. (eds.) Technologies for Supporting Reasoning Communities and Collaborative Decision Making: Cooperative Approaches, pp. 272–295. IGI Global Information Science, Hershey Pa (2010)CrossRefGoogle Scholar
  16. 16.
    Borri, D., Camarda, D.: Visualizing space-based interactions among distributed agents: Environmental planning at the inner-city scale. In: Luo, Y. (ed.) CDVE 2006. LNCS, vol. 4101, pp. 182–191. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R.: Spatial Cognition: Reasoning, Action, Interaction. Springer, Berlin (2007)CrossRefGoogle Scholar
  18. 18.
    Shelton, A.L., McNamara, T.P.: Systems of Spatial Reference in Human Memory. Cognitive Psychology 43, 274–310 (2001)CrossRefGoogle Scholar
  19. 19.
    Bostock, D.: Space, Time, Matter, and Form: Essays on Aristotle’s Physics. OUP, Oxford (2006)CrossRefGoogle Scholar
  20. 20.
    Friedmann, J.: Planning in the Public Domain: From Knowledge to Action. Princeton University Press, Princeton (1987)Google Scholar
  21. 21.
    Schön, D.A.: The Reflexive Practitioner. Basic Books, New York (1983)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Dino Borri
    • 1
  • Domenico Camarda
    • 1
  1. 1.Technical University of BariBariItaly

Personalised recommendations