Skip to main content

Diamond Synthesis, Properties and Applications

  • Chapter
  • First Online:
Chemical Vapour Deposition of Diamond for Dental Tools and Burs

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 802 Accesses

Abstract

Diamond is an ideal material for numerous applications such as cutting tools such as dental burs and drills due to its unique combination of chemical, mechanical and thermal properties. The most widely used method of growth diamond is chemical vapour deposition (CVD) namely hot filament and microwave plasma processes. The use of vertical filament chemical vapour deposition (VFCVD) process has been developed to uniformly coat complex shaped tools and is described in detail. The growth characteristics and film properties are described for use on dental burs and drills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal A et al (1998) HFCVD diamond grown with added nitrogen: film characterization and gas-phase composition studies. Diam Relat Mater 7(7):1033–1038

    Article  Google Scholar 

  • Ahmed W et al (2000) CVD diamond: controlling structure and morphology. Vacuum 56(3):153–158

    Article  Google Scholar 

  • Aleksenskii AE et al (1999) The structure of diamond nanoclusters. Phys Solid State 41(4):668–671

    Article  Google Scholar 

  • Angus JC (1991) Diamond and diamond-like phases. Diam Relat Mater 1(1):61–62

    Article  Google Scholar 

  • Angus JC, Hayman CC (1998) Low pressure, metastable growth of diamond and “diamond like” phases Science 241(4868):913–921

    Google Scholar 

  • Angus JC et al (2002) A short history of diamond synthesis. Diam Films Handbook 1–17

    Google Scholar 

  • Anthony TR, Fleischer JF (1993) Substantially transparent free standing diamond films. US Patent No 5,278,931

    Google Scholar 

  • Anusavice KJ (2012) Standardizing failure, success, and survival decisions in clinical studies of ceramic and metal–ceramic fixed dental prostheses. Dent Mater 28(1):102–111

    Article  Google Scholar 

  • Bachmann PK et al (1991) Towards a general concept of diamond chemical vapour deposition. Diam Relat Mater 1(1):1–12

    Article  Google Scholar 

  • Bachmann PK, van Enckevort W (1992) Diamond deposition technologies. Diam Relat Mater 1(10):1021–1034

    Article  Google Scholar 

  • Banholzer W (1992) Understanding the mechanism of CVD diamond. Surf Coat Technol 53(1):1–12

    Article  Google Scholar 

  • Berman R, Simon SF (1955) On the graphite-diamond equilibrium. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 59(5):333–338

    Google Scholar 

  • Bhushan B et al (1993) Tribological properties of polished diamond films. J Appl Phys 74(6):4174–4180

    Article  Google Scholar 

  • Bianco A et al (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9(6):674–679

    Article  Google Scholar 

  • Blocher JM (1966) II Crushing strength at individual pyc-coated particles as a function of silicon content, Google Patents

    Google Scholar 

  • Bragg WH, Bragg WL (1913) The structure of the diamond. Nature 91:557

    Article  Google Scholar 

  • Butler JE, Windischmann H (1998) Developments in CVD-diamond synthesis during the past decade. MRS Bull 23(09):22–27

    Article  Google Scholar 

  • Butler JE et al (1993) Thin film diamond growth mechanisms [and comment]. Philos Trans R Soc Lond Ser A: Phys Eng Sci 342(1664):209–224

    Article  Google Scholar 

  • Davis RF (1993) Diamond films and coatings Noyes Publications(USA):435

    Google Scholar 

  • Derjaguin BV et al (1975) Structure of autoepitaxial diamond films. J Cryst Growth 31:44–48

    Article  Google Scholar 

  • Deryagin BV et al (1976) Diamond crystal synthesis on nondiamond substrates. Sov Phys Dokl

    Google Scholar 

  • DeVries RC (1987) Synthesis of diamond under metastable conditions. Annu Rev Mater Sci 17(1):161–187

    Article  Google Scholar 

  • Donnet JB (1993) Carbon black: science and technology, CRC Press

    Google Scholar 

  • Elmazria O et al (2003) High velocity SAW using aluminum nitride film on unpolished nucleation side of free-standing CVD diamond. Ultrason, Ferroelectr Freq Control, IEEE Trans 50(6):710–715

    Article  Google Scholar 

  • Eversole WG (1958) Liquid-gas contacting apparatus. US Patent No 2,819,887

    Google Scholar 

  • Eversole WG (1962) Synthesis of diamond. US Patent No 3,030,188

    Google Scholar 

  • Field JE (1992) The properties of natural and synthetic diamond. Academic Press, London

    Google Scholar 

  • Freeman JH et al (1978) Epitaxial synthesis of diamond by carbon-ion deposition at low energy. Nature 275:634–635

    Article  Google Scholar 

  • Frey RM, Simpson M (1994) Method for making free-standing diamond film. US Patent No 5,314,652

    Google Scholar 

  • Geim AK (2011) Nobel lecture: random walk to graphene. Rev Mod Phys 83(3):851

    Article  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  Google Scholar 

  • Hancock Y (2011) The 2010 nobel prize in physics—ground-breaking experiments on graphene. J Phys D Appl Phys 44(47):473001

    Article  Google Scholar 

  • Hartley H (1947) Antoine Laurent Lavoisier 26 August 1743–8 May 1794. In: Proceedings of the Royal Society of London. Series B, Biological Sciences, pp 348–377

    Google Scholar 

  • Haubner R, Lux B (1996) On the formation of diamond coatings on WC/Co hard metal tools. Int J Refract Metal Hard Mater 14(1):111–118

    Article  Google Scholar 

  • Herman F (1952) Electronic structure of the diamond crystal. Phys Rev 88(5):1210

    Article  Google Scholar 

  • Iijima S (2002) Carbon nanotubes: past, present, and future. Physica B 323(1):1–5

    Article  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter

    Google Scholar 

  • Joffreau PO et al (1988) Low-pressure diamond growth on refractory metals. Int J Refract Hard Met 7(4):186–194

    Google Scholar 

  • Jones AC, Hitchman ML (2009) Chemical vapour deposition: precursors, processes and applications. R Soc Chem 490–530

    Google Scholar 

  • Kamo M et al (1983) Diamond synthesis from gas phase in microwave plasma. J Cryst Growth 62(3):642–644

    Article  Google Scholar 

  • Kroto H (1988) Space, stars, C60, and soot. Science 242(4882):1139–1145

    Article  Google Scholar 

  • Kroto HW et al (1991) C60: buckminsterfullerene. Chem Rev 91(6):1213–1235

    Article  Google Scholar 

  • Ledermann A et al (2001) Influence of gas supply and filament geometry on the large-area deposition of amorphous silicon by hot-wire CVD. Thin Solid Films 395(1):61–65

    Article  Google Scholar 

  • Lee S et al (1999) CVD diamond films: nucleation and growth. Mater Sci Eng: R: R 25(4):123–154

    Article  Google Scholar 

  • Lee ST et al (2000) A nucleation site and mechanism leading to epitaxial growth of diamond films. Science 287(5450):104–106

    Article  Google Scholar 

  • Liang ZZ et al (2005) Synthesis of HPHT diamond containing high concentrations of nitrogen impurities using NaN3 as dopant in metal-carbon system. Diam Relat Mater 14(11):1932–1935

    Article  Google Scholar 

  • Lifshitz Y et al (2004) Visualization of diamond nucleation and growth from energetic species. Phys Rev Lett 93(5):056101

    Article  Google Scholar 

  • Liou Y et al (1990) The effect of oxygen in diamond deposition by microwave plasma enhanced chemical vapor deposition. J Mater Res 5(11):2305–2312

    Article  Google Scholar 

  • Liu H, Dandy DS (1996) Diamond chemical vapor deposition: Nucleation and Early Growth Stages, Elsevier

    Google Scholar 

  • Lux B, Haubner R (1996) Diamond deposition on cutting tools. Ceram Int 22(4):347–351

    Article  Google Scholar 

  • Mao WL et al (2003) Bonding changes in compressed superhard graphite. Science 302(5644):425–427

    Article  Google Scholar 

  • Matsumoto S et al (1982a) Vapor deposition of diamond particles from methane. Jpn J Appl Phys 21(4A):L183

    Article  Google Scholar 

  • Matsumoto S et al (1982b) Growth of diamond particles from methane-hydrogen gas. J Mater Sci 17(11):3106–3112

    Article  Google Scholar 

  • May P (1995a) Synthetic diamond: Emerging CVD science and technology: Edited by Harl E. Spear and John P. Dismuhes, pp. 663. Wiley, Chichester, 1994. ISBN 0 4715 3589 3. Endeavour 19(1):48

    Article  Google Scholar 

  • May PW (1995b) CVD diamond: a new technology for the future? Endeavour 19(3):101–106

    Article  Google Scholar 

  • May PW et al (1995) CVD diamond-coated fibres. Diam Relat Mater 4(5–6):794–797

    Article  Google Scholar 

  • Messier R et al (1987) From diamond-like carbon to diamond coatings. Thin Solid Films 153(1):1–9

    Article  Google Scholar 

  • Photo-Cell ANES (1946) Applied physics. J Appl Phys 17:215

    Article  Google Scholar 

  • Sein H et al (2004) Performance and characterisation of CVD diamond coated, sintered diamond and WC–Co cutting tools for dental and micromachining applications. Thin Solid Films 447:455–461

    Article  Google Scholar 

  • Sommer M, Smith FW (1990) Activity of tungsten and rhenium filaments in CH4/H2 and C2H2/H2 mixtures: importance for diamond CVD. J Mater Res 5(11):2433–2440

    Article  Google Scholar 

  • Spear KE (1989) Diamond—ceramic coating of the future. J Am Ceram Soc 72(2):171–191

    Article  Google Scholar 

  • Spear KE, Dismukes JP (1994). Synthetic diamond: emerging CVD science and technology. Wiley, New York

    Google Scholar 

  • Spencer EG et al (2008) Ion-beam-deposited polycrystalline diamondlike films. Appl Phys Lett 29(2):118–120

    Article  Google Scholar 

  • Spitsyn BV et al. (1981) Vapor growth of diamond on diamond and other surfaces. J Cryst Growth 52 Part 1(0):219–226

    Google Scholar 

  • Stankovich S et al (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  Google Scholar 

  • Tennant S (1797) On the nature of the diamond. By Smithson Tennant, Esq. FRS. Philosophical Transactions of the Royal Society of London, pp 123–127

    Google Scholar 

  • Trucano P, Chen R (1975) Structure of graphite by neutron diffraction. Nature 258(5531):136–137

    Article  Google Scholar 

  • Tsang RS et al (1997) Examination of the effects of nitrogen on the CVD diamond growth mechanism using in situ molecular beam mass spectrometry. Diam Relat Mater 6(2):247–254

    Article  Google Scholar 

  • Van Enckevort WJP et al (1993) CVD diamond growth mechanisms as identified by surface topography. Diam Relat Mater 2(5):997–1003

    Article  Google Scholar 

  • Weeks ME (1933) The discovery of the elements chronology. J Chem Educ 10(4):223

    Article  Google Scholar 

  • Yoder MN (1994) Synthetic diamond: emerging CVD Science and technology. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waqar Ahmed .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Ahmed, W. et al. (2014). Diamond Synthesis, Properties and Applications. In: Chemical Vapour Deposition of Diamond for Dental Tools and Burs. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-00648-2_1

Download citation

Publish with us

Policies and ethics