Skip to main content

Single Electron Atoms in Strong Laser Fields

  • Chapter
Theoretical Femtosecond Physics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2141 Accesses

Abstract

In this chapter some modern applications of laser-matter interaction in the field of atomic physics are reviewed. Due to the availability of short and strong laser pulses a range of new and partly counter-intuitive phenomena can be observed. Some of these are:

  • Above Threshold Ionization (ATI)

  • Multi-Photon Ionization (MPI)

  • Localization of Rydberg atoms by Half Cycle Pulses (HCP)

  • High-order Harmonic Generation (HHG)

These phenomena can in general not be understood in the framework of perturbation theory. It turns out that the time-dependent wavepacket approach of Chap. 2 is the method of choice to describe and understand a lot of the new atomic physics in strong laser fields. In the present chapter we will almost exclusively deal with the dynamics of a single electron, initially bound in a Coulomb potential. This chapter will therefore begin with a short review of the unperturbed hydrogen atom, together with atomic units. After the discussion of different aspects of field induced ionization, HHG will be reviewed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Taking the finiteness of the proton mass into account would lead to the replacement of the electron mass by the reduced mass μ=m e M p/(m e+M p) in the final solution.

  2. 2.

    Please note that we are using the definition of [3] which leads to a slightly different normalization factor as compared to the one in [2].

  3. 3.

    The length scale a 0 in the bare 3d Coulomb problem appears only in the solution.

  4. 4.

    Note that each symmetric well potential in 1d has at least one bound state, no matter how shallow it is [11].

  5. 5.

    A direct comparison with the RWA results of Chap. 3 would ask for an extension of the two-level results to pulsed driving and in addition the dipole matrix element would have to be calculated.

  6. 6.

    This is another occurrence of the area theorem of Sect. 3.2.

  7. 7.

    The creation of radiation in the soft X-ray regime (with photon energies around 1 keV) is thus feasible [31].

  8. 8.

    A more involved quantum mechanical reasoning, based on the strong field approximation, leads to similar results [38].

  9. 9.

    Without the initial tunnel ionization, as we saw in Chap. 3, the maximal kinetic energy that can be gained in the field is 2U p, and the cutoff for scattering initial conditions has to be adjusted accordingly.

  10. 10.

    For simplicity, we can take a superposition with equal weights for the following purposes.

References

  1. M. Weissbluth, Photon-Atom Interactions (Academic Press, New York, 1989)

    Google Scholar 

  2. E. Merzbacher, Quantum Mechanics, 2nd edn. (Wiley, New York, 1970)

    Google Scholar 

  3. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals Series and Products, 5th edn. (Academic Press, New York, 1994)

    MATH  Google Scholar 

  4. R. Loudon, Am. J. Phys. 27, 649 (1959)

    Article  ADS  Google Scholar 

  5. M. Andrews, Am. J. Phys. 34, 1194 (1966)

    Article  ADS  Google Scholar 

  6. U. Schwengelbeck, F.H.M. Faisal, Phys. Rev. A 50, 632 (1994)

    Article  ADS  Google Scholar 

  7. M. Andrews, Am. J. Phys. 44, 1064 (1976)

    Article  ADS  Google Scholar 

  8. R. Blümel, W.P. Reinhardt, Chaos in Atomic Physics (Cambridge University Press, Cambridge, 1997)

    Book  MATH  Google Scholar 

  9. J.H. Eberly, Phys. Rev. A 42, 5750 (1990)

    Article  ADS  Google Scholar 

  10. F.A. Ilkov, J.E. Decker, S.L. Chin, J. Phys. B, At. Mol. Opt. Phys. 25, 4005 (1992)

    Article  ADS  Google Scholar 

  11. L.D. Landau, E.M. Lifshitz, Lehrbuch der Theoretischen Physik, Vol. III: Quantenmechanik, 8th edn. (Akademie-Verlag, Berlin, 1988)

    Google Scholar 

  12. M.V. Ammosov, N.B. Delone, V.P. Krainov, Sov. Phys. JETP 64, 1191 (1986)

    Google Scholar 

  13. L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)

    MathSciNet  Google Scholar 

  14. P. Lambropoulos, X. Tang, Adv. At. Mol. Opt. Phys. Suppl. 1, 335 (1992)

    Google Scholar 

  15. G. van de Sand, J.M. Rost, Phys. Rev. A 62, 053403 (2000)

    Article  ADS  Google Scholar 

  16. G. van de Sand, Semiklassische Dynamik in starken Laserfeldern. Ph.D. thesis, Universität Freiburg, Freiburg, 1999

    Google Scholar 

  17. P. Agostini, F. Fabre, G. Mainfray, G. Petite, N.K. Rahman, Phys. Rev. Lett. 42, 1127 (1979)

    Article  ADS  Google Scholar 

  18. D.B. Milosevic, G.G. Paulus, D. Bauer, W. Becker, J. Phys. B 39, R203 (2006)

    Article  ADS  Google Scholar 

  19. H.R. Reiss, Opt. Express 8, 99 (2001)

    Article  ADS  Google Scholar 

  20. R. Grobe, C.K. Law, Phys. Rev. A 44, R4114 (1991)

    Article  ADS  Google Scholar 

  21. R.R. Jones, D. You, P.H. Bucksbaum, Phys. Rev. Lett. 70, 1236 (1993)

    Article  ADS  Google Scholar 

  22. D.S. Citrin, Opt. Express 1, 376 (1997)

    Article  ADS  Google Scholar 

  23. M.T. Frey, F.B. Dunning, C.O. Reinhold, S. Yoshida, J. Burgdörfer, Phys. Rev. A 59, 1434 (1999)

    Article  ADS  Google Scholar 

  24. D. Dimitrovski, E.A. Solov’ev, J.S. Briggs, Phys. Rev. A 72, 043411 (2005)

    Article  ADS  Google Scholar 

  25. R. Gebarowski, J. Phys. B, At. Mol. Opt. Phys. 30, 2143 (1997)

    Article  ADS  Google Scholar 

  26. C.L. Stokely, J.C. Lancaster, F.B. Dunning, D.G. Arbó, C.O. Reinhold, J. Burgdörfer, Phys. Rev. A 67, 013403 (2003)

    Article  ADS  Google Scholar 

  27. L.D. Landau, E.M. Lifschitz, Lehrbuch der Theoretischen Physik, Vol. I: Mechanik, 10th edn. (Akademie-Verlag, Berlin, 1981)

    Google Scholar 

  28. S. Yoshida, F. Grossmann, E. Persson, J. Burgdörfer, Phys. Rev. A 69, 043410 (2004)

    Article  ADS  Google Scholar 

  29. S. Yoshida, Quantum chaos in the periodically kicked Rydberg atom. Ph.D. thesis, University of Tennessee, Knoxville, 1999

    Google Scholar 

  30. N.T. Maitra, J. Chem. Phys. 112, 531 (2000)

    Article  ADS  Google Scholar 

  31. J. Seres, E. Seres, A.J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, F. Krausz, Nature 433, 596 (2005)

    Article  ADS  Google Scholar 

  32. M. Protopapas, C.H. Keitel, P.L. Knight, Rep. Prog. Phys. 60, 389 (1997). And Refs. therein

    Article  ADS  Google Scholar 

  33. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  34. A. Pukhov, S. Gordienko, T. Baeva, Phys. Rev. Lett. 91, 173002 (2003)

    Article  ADS  Google Scholar 

  35. K. Burnett, V.C. Reed, J. Cooper, P.L. Knight, Phys. Rev. A 45, 3347 (1992)

    Article  ADS  Google Scholar 

  36. V. Yakovlev, A. Scrinzi, Phys. Rev. Lett. 91, 153901 (2003)

    Article  ADS  Google Scholar 

  37. M. Protopapas, D.G. Lappas, C.H. Keitel, P.L. Knight, Phys. Rev. A 53, R2933 (1996)

    Article  ADS  Google Scholar 

  38. M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49, 2117 (1994)

    Article  ADS  Google Scholar 

  39. T. Kreibich, M. Lein, V. Engel, E.K.U. Gross, Phys. Rev. Lett. 87, 103901 (2001)

    Article  ADS  Google Scholar 

  40. G. van de Sand, J.M. Rost, Phys. Rev. Lett. 83, 524 (1999)

    Article  ADS  Google Scholar 

  41. R. Abrines, I.C. Percival, Proc. Phys. Soc. A 88, 861 (1966)

    Article  ADS  Google Scholar 

  42. C. Zagoya, C.M. Goletz, F. Grossmann, J.M. Rost, New J. Phys. 14, 093050 (2012)

    Article  ADS  Google Scholar 

  43. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, 2nd edn. (Pearson Education, Harlow, 2003)

    Google Scholar 

  44. C.J. Joachain, N.J. Kylstra, R.M. Potvliege, Atoms in Intense Laser Fields (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  45. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995)

    Google Scholar 

  46. M.V. Fedorov, Atomic and Free Electrons in a Strong Light Field (World Scientific, Singapore, 1997). And Refs. therein

    Google Scholar 

  47. J.R. Oppenheimer, Phys. Rev. 13, 66 (1928)

    Article  ADS  Google Scholar 

  48. A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Sov. Phys. JETP 50, 1393 (1966)

    Google Scholar 

  49. A. Wirth, M.T. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T.T. Luu, S. Pabst, R. Santra, Z.A. Alahmed, A.M. Azzeer, V.S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, Science 334, 195 (2011)

    Article  ADS  Google Scholar 

  50. T. Millack, V. Véniard, J. Henkel, Phys. Lett. A 176, 433 (1993)

    Article  ADS  Google Scholar 

  51. M. Pont, N.R. Walet, M. Gavrila, C.W. McCurdy, Phys. Rev. Lett. 61, 939 (1988)

    Article  ADS  Google Scholar 

  52. L.E. Reichl, The Transition to Chaos, 2nd edn. (Springer, New York, 2004)

    Book  MATH  Google Scholar 

  53. J.E. Bayfield, Quantum Evolution: An Introduction to Time-Dependent Quantum Mechanics (Wiley, New York, 1999)

    Google Scholar 

  54. J.M. Dahlström, A. L’Huillier, A. Maquet, J. Phys. B 45, 183001 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: More on Atomic Units

Appendix: More on Atomic Units

There is a close connection between atomic units and some expectation values of the hydrogen atom. The Bohr radius, e.g., is related to the expectation value of the position operator in the ground state which is given by

$$\begin{aligned} \langle \hat{r}\rangle=\frac{3}{2}a_0 , \end{aligned}$$
(4.77)

and in addition the maximum of the probability density for finding the particle in the ground state with a radial separation r from the nucleus is at a 0 [2]. Furthermore, the energy constructed from the atomic base units is twice the absolute value of the ground state energy \(E_{1}=-\frac{1}{2}\mbox{ a.u.}\approx-13.6\mbox{ eV}\). One could also measure energy in terms of the ionization potential

$$\begin{aligned} I_{\mathrm{p}}=-E_1 \end{aligned}$$
(4.78)

of hydrogen, however. The corresponding units are so-called Rydberg units (1 a.u.=2 Rydberg), in contrast to the atomic or Hartree units.

The atomic unit for velocity follows most easily by considering the quantum mechanical virial theorem [2], which for the hydrogen atom can be stated as

$$\begin{aligned} \langle \hat{T}_{\mathrm{k}}\rangle=-\frac{1}{2}\langle V_{\mathrm{C}}\rangle . \end{aligned}$$
(4.79)

For the ground state we find with its help that

$$\begin{aligned} \langle \hat{T}_{\mathrm{k}}\rangle=-E_1 \end{aligned}$$
(4.80)

and with the definition

$$\begin{aligned} \langle \hat{T}_{\mathrm{k}}\rangle=:\frac{m_{\mathrm{e}}v_0^2}{2} \end{aligned}$$
(4.81)

the atomic velocity unit \(v_{0}=\sqrt{2|E_{1}|/m_{\mathrm{e}}}\approx c\sqrt{27.212 \mbox{ eV}/0.511 \mbox{ MeV}}\) is related to the vacuum speed of light via v 0==1 a.u. with the fine structure constant α≈1/137. Using v 0 and a 0 the atomic unit of time is formed via t 0=a 0/v 0≈24 as. The oscillation period of the electron on the Bohr orbit is therefore given by T e=2π a.u.

The most important unit for this book is the one for the electric field which is given by \({\mathcal{E}}_{\mathrm{at}}\approx5.1427\cdot10^{11}\mbox{ V}\,\mbox{m}^{-1}\). This is the value of the electric field, due to the proton, experienced by the electron at the Bohr radius. The intensity that corresponds to that field is \(I_{\mathrm{at}}=\frac{c\varepsilon_{0}{\mathcal{E}}_{\mathrm {at}}^{2}}{2}\approx 3.5101\cdot10^{16}\mbox{ W}\,\mbox{cm}^{-2}\). An overview of the units mentioned can be found in Table 4.1. As an example, we use this table to convert frequency into wave length. For frequencies given in a.u. (ω=X a.u.), the wave length (in SI units) is

$$\begin{aligned} \lambda= \frac{2\pi c}{\omega} \approx\frac{2\pi 137.036}{\mathrm{X}} \mbox{ a.u.} \approx \frac{45.5636}{\mathrm{X}} \mbox{ nm} . \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grossmann, F. (2013). Single Electron Atoms in Strong Laser Fields. In: Theoretical Femtosecond Physics. Graduate Texts in Physics. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00606-2_4

Download citation

Publish with us

Policies and ethics