Skip to main content

Towards Chemical Fingerprinting of Deep-Level Defect Sites in CdS Nanocrystals by Optically Detected Spin Coherence

  • Chapter
  • First Online:
  • 399 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Carrier trapping in colloidal nanocrystals represents a major energy loss mechanism for excitonic states crucial to devices, yet surprisingly little is known about the chemical nature of these trap centers or the types of interactions that charges experience in them. Here, we use a pulsed microwave optically detected magnetic resonance (pODMR) technique in order to probe the interaction pathways existing between shallow band edge trap states and the deep-level emissive chemical defect states responsible for the broad, low energy emission common to CdS nanocrystals. Due to the longer spin-coherence lifetimes (T 2) of these states, Rabi flopping in the differential luminescence under resonance provides access to information regarding coupling types of shallow-trapped electron-hole pairs, both isolated species and those in proximity to the emissive defect. Corresponding Hahn spin-echo measurements expose an extraordinary long spin coherence time for colloidal nanocrystals (T 2 ≈ 1. 6 μs), which allows observation of local environmental interactions through electron spin-echo envelop modulation (ESEEM). Such an effect provides future opportunities for gaining the detailed chemical and structural information needed in order to eliminate energy loss mechanisms during the synthetic process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Semonin, O.E., Luther, J.M., Choi, S., Chen, H.-Y., Gao, J., Nozik, A.J., Beard, M.C.: Peak external photocurrent quantum efficiency exceeding 100 % via MEG in a quantum dot solar cell. Science 334(6062), 1530–1533 (2011)

    Article  ADS  Google Scholar 

  2. Dang, C., Lee, J., Breen, C., Steckel, J.S., Coe-Sullivan, S., Nurmikko, A.: Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotech. 7(5), 335–339 (2012)

    Article  ADS  Google Scholar 

  3. Wood, V., Panzer, M.J., Chen, J., Bradley, M.S., Halpert, J.E., Bawendi, M.G., Bulović, V.: Inkjet-printed quantum dot-polymer composites for full-color AC-driven displays. Adv. Mater. 21(21), 2151–2155 (2009)

    Article  Google Scholar 

  4. Tang, J., Kemp, K.W., Hoogland, S., Jeong, K.S., Liu, H., Levina, L., Furukawa, M., Wang, X., Debnath, R., Cha, D., Chou, K.W., Fischer, A., Amassian, A., Asbury, J.B., Sargent, E.H.: Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10(10), 765–771 (2011)

    Article  ADS  Google Scholar 

  5. Zhitomirsky, D., Kramer, I.J., Labelle, A.J., Fischer, A., Debnath, R., Pan, J., Bakr, O.M., Sargent, E.H.: Colloidal quantum dot photovoltaics: the effect of polydispersity. Nano. Lett. 12(2), 1007–1012 (2012)

    Article  ADS  Google Scholar 

  6. Gómez-Campos, F.M., Califano, M.: Hole surface trapping in CdSe nanocrystals: dynamics, rate fluctuations, and implications for blinking. Nano Lett. 12(9), 4508–4517 (2012)

    Article  ADS  Google Scholar 

  7. Fischer, S.A., Crotty, A.M., Kilina, S.V., Ivanov, S.A., Tretiak, S.: Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals. Nanoscale 4(3), 904–914 (2012)

    Article  ADS  Google Scholar 

  8. Voznyy, O.: Mobile surface traps in CdSe nanocrystals with carboxylic acid ligands. J. Phys. Chem. C 115, 15927–15932 (2011)

    Article  Google Scholar 

  9. Chestnoy, N., Harris, T., Hull, R., Brus, L.: Luminescence and photophysics of cadmium sulfide semiconductor clusters: the nature of the emitting electronic state. J. Phys. Chem. 90(15), 3393–3399 (1986)

    Article  Google Scholar 

  10. Bavykin, D.V., Savinov, E.N., Parmon, V.N.: Surface effects on regularities of electron transfer in CdS and CdS∕Cu x S colloids as studied by photoluminescence quenching. Langmuir 15(14), 4722–4727 (1999)

    Article  Google Scholar 

  11. Zhao, J., Nair, G., Fisher, B.R., Bawendi, M.G.: Challenge to the charging model of semiconductor-nanocrystal fluorescence intermittency from off-state quantum yields and multiexciton blinking. Phys. Rev. Lett. 104(15), 157403 (2010)

    Article  ADS  Google Scholar 

  12. Rosen, S., Schwartz, O., Oron, D.: Transient fluorescence of the off state in blinking CdSe/CdS/ZnS semiconductor nanocrystals is not governed by Auger recombination. Phys. Rev. Lett. 104(15), 157404 (2010)

    Article  ADS  Google Scholar 

  13. Galland, C., Ghosh, Y., Steinbrück, A., Sykora, M., Hollingsworth, J.A., Klimov, V.I., Htoon, H.: Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479(7372), 203–207 (2011)

    Article  ADS  Google Scholar 

  14. Vuylsteke, A., Sihvonen, Y.: Sulfur cacancy mechanism in pure CdS. Phys. Rev. 113(1), 40–42 (1959)

    Article  ADS  Google Scholar 

  15. Efros, A.L., Rosen, M.: Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett. 78(6), 1110–1113 (1997)

    Article  ADS  Google Scholar 

  16. Frantsuzov, P.A., Marcus, R.: Explanation of quantum dot blinking without the long-lived trap hypothesis. Phys. Rev. B 72(15), 155321 (2005)

    Article  ADS  Google Scholar 

  17. van Driel, A.F., Nikolaev, I.S., Vergeer, P., Lodahl, P., Vanmaekelbergh, D., Vos, W.L.: Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: interpretation of exponential decay models. Phys. Rev. B 75(3), 035329 (2007)

    Article  ADS  Google Scholar 

  18. Jones, M., Lo, S.S., Scholes, G.D.: Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics. Proc. Natl. Acad. Sci. 106(9), 3011–3016 (2009)

    Article  ADS  Google Scholar 

  19. Jones, M., Lo, S.S., Scholes, G.D.: Signatures of exciton dynamics and carrier rrapping in the rime-resolved photoluminescence of colloidal CdSe nanocrystals. J. Phys. Chem. C 113(43), 18632–18642 (2009)

    Article  Google Scholar 

  20. Edgar, A., Pörsch, J.: Optically detected magnetic resonance from a complex donor in CdS. Solid State Commun. 44(5), 741–743 (1982)

    Article  ADS  Google Scholar 

  21. Lifshitz, E., Litvin, I.D., Porteanu, H., Lipovskii, A.A.: Magneto-optical properties of CdS nanoparticles embedded in phosphate glass. Chem. Phys. Lett. 295(3), 249–256 (1998)

    Article  ADS  Google Scholar 

  22. Paik, S.-Y., Lee, S.-Y., Baker, W.J., McCamey, D.R., Boehme, C.: T1 and T2 spin relaxation time limitations of phosphorous donor electrons near crystalline silicon to silicon dioxide interface defects. Phys. Rev. B 81(7), 075214 (2010)

    Article  ADS  Google Scholar 

  23. Kraus, R.M., Lagoudakis, P.G., Rogach, A.L., Talapin, D.V., Weller, H., Lupton, J.M., Feldmann, J.: Room-temperature exciton storage in elongated semiconductor nanocrystals. Phys. Rev. Lett. 98(1), 017401 (2007)

    Article  ADS  Google Scholar 

  24. McCamey, D.R., Lee, S.-Y., Paik, S.-Y., Lupton, J.M., Boehme, C.: Spin-dependent dynamics of polaron pairs in organic semiconductors. Phys. Rev. B 82(12), 125206 (2010)

    Article  ADS  Google Scholar 

  25. Brovelli, S., Galland, C., Viswanatha, R., Klimov, V.I.: Tuning radiative recombination in Cu-doped nanocrystals via electrochemical control of surface trapping. Nano. Lett. 12(8), 4372–4379 (2012)

    Article  ADS  Google Scholar 

  26. Efros, A., Rosen, M., Kuno, M., Nirmal, M., Norris, D., Bawendi, M.: Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys. Rev. B 54(7), 4843–4856 (1996)

    Article  ADS  Google Scholar 

  27. Horodyská, P., Němec, P., Sprinzl, D., Malý, P., Gladilin, V.N., Devreese, J.T.: Exciton spin dynamics in spherical CdS quantum dots. Phys. Rev. B 81(4), 045301 (2010)

    Article  ADS  Google Scholar 

  28. Davies, J.: Energy transfer effects in ODMR spectra: a possible source of misinterpretation. J. Phys. C: Solid State Phys. 16(23), L867–L871 (1983)

    Article  ADS  Google Scholar 

  29. Schroeter, D., Griffiths, D., Sercel, P.: Defect-assisted relaxation in quantum dots at low temperature. Phys. Rev. B 54(3), 1486–1489 (1996)

    Article  ADS  Google Scholar 

  30. Astashkin, A.V., Schweiger, A.: Electron-spin transient nutation: a new approach to simplify the interpretation of ESR spectra. Chem. Phys. Lett. 174(6), 595–602 (1990)

    Article  ADS  Google Scholar 

  31. Gliesche, A., Michel, C., Rajevac, V., Lips, K., Baranovskii, S.D., Gebhard, F., Boehme, C.: Effect of exchange coupling on coherently controlled spin-dependent transition rates. Phys. Rev. B 77(24), 245206 (2008)

    Article  ADS  Google Scholar 

  32. Limes, M.E., Wang, J., Baker, W.J., Lee, S.Y., Saam, B., Boehme, C.: Numerical study of spin-dependent transition rates within pairs of dipolar and strongly exchange coupled spins with (\(s = 1/2\)) during magnetic resonant excitation. arXiv:1210.0950 [cond-mat.mtrl-sci]

    Google Scholar 

  33. Glenn, R., Limes, M.E., Saam, B., Boehme, C., Raikh, M.E.: Analytical study of spin-dependent transition rates within pairs of dipolar and strongly exchange coupled spins with (\(S = 1/2\)) during magnetic resonant excitation. arXiv:1210.0948 [cond-mat.mtrl-sci]

    Google Scholar 

  34. Glenn, R., Baker, W.J., Boehme, C., Raikh, M.E.: Analytical description of spin-Rabi oscillation controlled electronic transitions rates between weakly coupled pairs of paramagnetic states with \(S = 1/2\). arXiv:1207.1754 [cond-mat.mtrl-sci]

    Google Scholar 

  35. Wang, Y.R. Duke, C.B.: Cleavage faces of wurtzite CdS and CdSe: Surface relaxation and electronic structure. Phys. Rev. B 37(11), 6417–6424 (1988)

    Article  ADS  Google Scholar 

  36. Naydenov, B., Reinhard, F., Lämmle, A., Richter, V., Kalish, R., D’Haenens-Johansson, U.F.S., Newton, M., Jelezko, F., Wrachtrup, J.: Increasing the coherence time of single electron spins in diamond by high temperature annealing. Appl. Phys. Lett. 97(24), 242511 (2010)

    Article  ADS  Google Scholar 

  37. Rondin, L., Dantelle, G., Slablab, A., Grosshans, F., Treussart, F., Bergonzo, P., Perruchas, S., Gacoin, T., Chaigneau, M., Chang, H.-C., Jacques, V., Roch, J.-F.: Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Phys. Rev. B 82(11), 115449 (2010)

    Article  ADS  Google Scholar 

  38. Weber, J.R., Koehl, W.F., Varley, J.B., Janotti, A., Buckley, B.B., Van de Walle, C.G., Awschalom, D.D.: Quantum computing with defects. Proc. Natl. Acad. Sci. 107(19), 8513–8518 (2010)

    Article  ADS  Google Scholar 

  39. Ochsenbein, S.T., Gamelin, D.R.: Quantum oscillations in magnetically doped colloidal nanocrystals. Nat. Nanotech. 6(2), 112–115 (2011)

    Article  ADS  Google Scholar 

  40. Hoehne, F., Lu, J., Stegner, A., Stutzmann, M., Brandt, M., Rohrmüller, M., Schmidt, W., Gerstmann, U.: Electrically detected Electron-Spin-Echo Envelope Modulation: a highly sensitive technique for resolving complex interface structures. Phys. Rev. Lett. 106(19), 196101 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Schooten, K. (2013). Towards Chemical Fingerprinting of Deep-Level Defect Sites in CdS Nanocrystals by Optically Detected Spin Coherence. In: Optically Active Charge Traps and Chemical Defects in Semiconducting Nanocrystals Probed by Pulsed Optically Detected Magnetic Resonance. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00590-4_4

Download citation

Publish with us

Policies and ethics