A Cellular Automaton Model of the Effects of Maspin on Cell Migration

  • M. A. Al-Mamun
  • M. A. Hossain
  • M. S. Alam
  • R. Bass
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 222)


Maspin (Mammary Serine Protease Inhibitor) is a non-inhibitory serpin with multiple cellular effects that is a type II tumour metastasis suppressor. Maspin has been shown to reduce cell migration, invasion, proliferation and angiogenesis, and increase apoptosis and adhesion. In this paper, we report the development of a mathematical model of the effects of maspin on cellular proliferation and migration. An artificial neural network has been used to model the unknown cell signalling to determine the cells fate. Results show that maspin reduces migration by between 10-35%; confirmed by published in vitro data. From our knowledge, this is the first attempt to model maspin effects in a computational model to verify in vitro data. This will provide new insights into to the tumour suppressive properties of maspin and inform the development of novel cancer therapy.


Maspin Serpin Cell migration Mathematical model Neural Network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zou, Z., Anisowicz, A., Hendrix, M.J., et al.: Maspin, a serpin with tumor-suppressing activity in human mammary epithelialcells. Science 263, 526–529 (1994)CrossRefGoogle Scholar
  2. 2.
    Bailey, C.M., Abbott, D.E., Margaryan, N.V., et al.: Interferon regulatory factor 6 promotes cell cycle arrest and isregulated by the proteasome in a cell cycle-dependent manner. Molecular and Cellular Biology 28, 2235–2243 (2008)CrossRefGoogle Scholar
  3. 3.
    Bodenstine, T.M., Seftor, R.E., Khalkhali-Ellis, Z., Seftor, E.A., Pemberton, P.A., Hendrix, M.J.: Maspin: molecular mechanisms and therapeutic implications. Cancer Metastasis Rev. 31(3-4), 529–551 (2012)CrossRefGoogle Scholar
  4. 4.
    Cella, N., Contreras, A., Latha, K., Rosen, J.M., Zhang, M.: Maspin is physically associated with β1 integrin regulating cell adhesion in mammary epithelial cells. FASEB Journal 20, 1510–1512 (2006)CrossRefGoogle Scholar
  5. 5.
    Blacque, O.E., Worrall, D.M.: Evidence for a direct interaction between the tumor suppressor serpin, maspin, and types I and III collagen. Journal of Biological Chemistry 277, 10783–10788 (2002)CrossRefGoogle Scholar
  6. 6.
    Bailey, C.M., Khalkhali-Ellis, Z., Kondo, S., Margaryan, N.V.V., Seftor, R.E.B., Wheaton, W.W., Amir, S., Pins, M.R., Schutte, B.C., Hendrix, M.J.: Mammary serine protease inhibitor (Maspin) binds directly to interferon regulatory factor 6: identification of a novel serpin partnership. Journal of Biological Chemistry 280, 34210–34210 (2005)CrossRefGoogle Scholar
  7. 7.
    Li, Z., Shi, H.Y., Zhang, M.: Targeted expression of maspin in tumor vasculatures induces endothelial cell apoptosis. Oncogene 24, 2008–2019 (2005)CrossRefGoogle Scholar
  8. 8.
    Li, X., Yin, S., Meng, Y., Sakr, W., Sheng, S.: Endogenous inhibition of histone deacetylase 1 by tumor-suppressive maspin. Cancer Research 66, 9323–9329 (2006)CrossRefGoogle Scholar
  9. 9.
    Ravenhill, L., Wagstaff, L., Edwards, D.R., Ellis, V., Bass, R.: G-helix of Maspin Mediates Effects on Cell Migration and Adhesion. The Journal of Biological Chemistry 285(47), 36285–36292 (2010)CrossRefGoogle Scholar
  10. 10.
    Sherratt, J.A., Chaplain, M.A.J.: A new mathematical model for avascular tumour growth. Journal of Mathematical Biology 43, 291–312 (2001)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Gerlee, P., Anderson, A.R.A.: An evolutionary hybrid cellular automaton model of solid tumour growth. Journal of Theoretical Biology 246(4), 583–603 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kazmi, N., Hossain, M.A., Phillips, R.M., Al-Mamun, M.A., Bass, R.: Avascular tumour growth dynamics and the constraints of protein binding for drug transportation. J. Theor. Biol. 313, 142–152 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Casciari, J.J., Sotirchos, S.V., Sutherland, R.M.: Glucose diffusivity in multicellular tumor spheroids. Cancer Research 48, 3905–3909 (1988)Google Scholar
  14. 14.
    Grote, J., Susskind, S., Vaupel, P.: Oxygen diffusivity in tumour tissue (DS-carcinosarcoma) under temperature conditions within the range of 20-40 oC. Pflugers Architecture 372, 37–42 (1997)Google Scholar
  15. 15.
    Young, M.E., Carroad, P.A., Bell, R.L.: Estimation of diffusion coefficients of proteins. Biotechnol. Bioeng. 22(5), 947–955 (1980)CrossRefGoogle Scholar
  16. 16.
    Mueller-Klieser, W., Freyer, J.P., Sutherland, R.M.: Influence of glucose and oxygen supply conditions on the oxygenation of multicellular spheroids. British Journal of Cancer 53, 345–353 (1986)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • M. A. Al-Mamun
    • 1
  • M. A. Hossain
    • 1
  • M. S. Alam
    • 2
  • R. Bass
    • 1
    • 3
  1. 1.Computational Intelligence Group, Faculty of Engineering and EnvironmentUniversity of NorthumbriaNewcastleUK
  2. 2.Department of Applied Physics, Electronics and Communication EngineeringUniversity of DhakaDhakaBangladesh
  3. 3.Department of Applied Sciences, Faculty of Health and Life SciencesUniversity of NorthumbriaNewcastleUK

Personalised recommendations