HaptreeBuilder: Web Generation and Visualization of Risk Haplotype Trees

  • Dimitra Kamari
  • María Mar Abad-Grau
  • Fuencisla Matesanz
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 222)


The quantity and quality of genome-wide association studies for several diseases are constantly increasing. As a consequence, molecular biologists from different laboratories demand new visualization tools for them to explore results by view and formulate new conjectures to work on. Although nowadays most studies are not able to reconstruct individual haplotypes, the next generation sequencying technologies will allow to obtain individual haplotypes in most studies conducted in the next few years. As evolutionary analysis of the haplotypes can be an invaluable information to biomedical researchers to build hypotheses of genetic variation by considering haplotype evolution, we have build a web-based tool for biomedical researchers to build and visualize risk haplotype trees along a chromosome so that they can perform a visual online exploration of the genetic factors associated with complex diseases.


genome-wide association study haplotype disease risk next generation sequencing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    (IMSGC), I.M.S.G.C.: Evidence for polygenic susceptibility to multiple sclerosis - the shape of things to come. Am. J. Hum. Genet. 86, 621–625 (2010)Google Scholar
  2. 2.
    Higasa, K., Kukita, Y., Kato, K., Wake, N., Tashira, T., Hayashi, K.: Evaluation of haplotype inference using definitive haplotype data obtained from complete hydatidiform moles, and its significance for the analyses of positively selected regions. PLoS Genetics 5, e1000468 (2009)Google Scholar
  3. 3.
    Sevon, P., Toivonen, H., Ollikainen, V.: Tree pattern mining for gene mapping. IEEE Transaction on Computation Biology and Bioinformatics 3(2), 174–185 (2001)CrossRefGoogle Scholar
  4. 4.
    Moreno-Ortega, J.J., Medina-Medina, N., Montes-Soldado, R., Abad-Grau, M.M.: Improving reproducibility on tree based multimarker methods: TreeDTh. In: Rocha, M.P., Corchado Rodríguez, J.M., Fdez-Riverola, F., Valencia, A. (eds.) PACBB 2011. AISC, vol. 93, pp. 389–396. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Abad-Grau, M., Medina-Medina, N., Moral, S., Montes-Soldado, R., Torres-Sánchez, S., Matesanz, F.: Increasing power by using haplotype similarity in a multimarker transmission/disequilibrium test. Journal of Bioinformatics and Computational Biology 11(2), 1250014 (2013)Google Scholar
  6. 6.
    Abad-Grau, M., Medina-Medina, N., Montes-Soldado, R., Matesanz, F., Bafna, V.: Sample reproducibility of genetic association using different multimarker tdts in genome-wide association studies: Characterization and a new approach. PLoS One 7(2), 29613 (2012)CrossRefGoogle Scholar
  7. 7.
    Templeton, A.R., Crandall, K.A., Sing, C.F.: A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. cladogram estimation. Genetics 132(2), 619–633 (1992)Google Scholar
  8. 8.
    Clement, M., Posada, D., Crandall, K.: Tcs: a computer program to estimate gene genealogies. Molecular Ecology 9(10), 1657–1660 (2000)CrossRefGoogle Scholar
  9. 9.
    Masegosa, A., Abad-Grau, M.M., Moral, S., Matesanz, F.: Learning classiers from discretized expression quantitative trait loci. In: IWBBIO 2013: Proceedings of the 1st International Work-Conference on Bioinformatics and Biomedical Engineering, Granada, Spain, pp. 1–8 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Dimitra Kamari
    • 1
  • María Mar Abad-Grau
    • 2
  • Fuencisla Matesanz
    • 3
  1. 1.Department of Computer Engineering and InformaticsUniversity of PatrasPatrasGreece
  2. 2.Department of Computer Languages and SystemsCITIC - University of GranadaGranadaSpain
  3. 3.Instituto de Parasitología López NeyraCSICGranadaSpain

Personalised recommendations