Advertisement

On an Individual-Based Model for Infectious Disease Outbreaks

  • Pierpaolo Vittorini
  • Ferdinando di Orio
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 222)

Abstract

The mathematical modelling of infectious diseases is a large research area with a wide literature. In the recent past, most of the scientific contributions focused on compartmental models. However, the increasing computing power is pushing towards the development of individual models that consider the disease transmission and evolution at a very fine-grained level. In the paper, the authors give a short state of the art of compartmental models, summarise one of the most know individual models, and describe a generalization and a simulation algorithm.

Keywords

computational epidemiology infectious diseases statistical models computer simulations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alloran, M.E., Longini Jr., I.M., Nizam, A., Yang, Y.: Containing bioterrorist smallpox. Science 298, 1428–1432 (2002)CrossRefGoogle Scholar
  2. 2.
    Barrett, C.L., Bisset, K.R., Eubank, S.G., Feng, X., Marathe, M.V.: EpiSimdemics: an efficient algorithm for simulating the spread of infectious disease over large realistic social networks. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC 2008, pp. 1–12. IEEE Press, Piscataway (2008)Google Scholar
  3. 3.
    Beckman, R., Berkbigler, K., Bisset, K., Bush, B., Eubank, S., Henson, K., Hurford, J., Kubicek, D., Marathe, M., Romero, P., Smith, J., Smith, L.L., Speckman, P., Stretz, P., Thayer, G., Eeckhout, E.V., Barrett, C., Williams, M.: TRANSIMS, Los Alamos National Laboratory, ch. 3 (2003), http://ndssl.vbi.vt.edu/Publications/TransimsVol3Ch3.pdf
  4. 4.
    Carley, K., Fridsma, D., Casman, E., Yahja, A., Altman, N., Chen, L.C., Kaminsky, B., Nave, D.: BioWar: scalable agent-based model of bioattacks. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 36(2), 252–265 (2006)CrossRefGoogle Scholar
  5. 5.
    Danièle, B.: On probabilistic timed automata. Theoretical Computer Science 292(1), 65–84 (2003)Google Scholar
  6. 6.
    Dodds, P.S., Watts, D.J.: A generalized model of social and biological contagion. Journal of Theoretical Biology 232, 587–604 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Eubank, S., Guclu, H., Kumar, A., Marathe, M., Srinivasan, A., Toroczkal, Z., Wang, N.: Modelling disease outbreaks in realistic urban social networks. Nature 429(6988), 180–184 (2004)CrossRefGoogle Scholar
  8. 8.
    Godfrey, K.: Compartmental models and their application. Academic Press (1983)Google Scholar
  9. 9.
    Grassly, N.C., Fraser, C.: Mathematical models of infectious disease transmission. Nat. Rev. Microbiol. 6(6), 477–487 (2008)Google Scholar
  10. 10.
    Hethcote, H.W.: The mathematics of infectious disease. SIAM Review 42, 599–653 (2000)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Keeling, M.: The effects of local spatial structure on epidemiological invasions. Proceedings of the Royal Society of London B Biological Sciences 266, 859–867 (1999)CrossRefGoogle Scholar
  12. 12.
    Kenrad, N.E., Masters, C.F.: Infectious Disease Epidemiology: Theory and Practice. Jones & Bartlett Publishers (2006)Google Scholar
  13. 13.
    Rickert, M., Nagel, K.: Dynamic traffic assignment on parallel computers in TRANSIMS. Future Gener. Comput. Syst. 17(5), 637–648 (2001)CrossRefGoogle Scholar
  14. 14.
    Vittorini, P., Villani, A., Di Orio, F.: An individual-based networked model with probabilistic relocation of people and vectors among locations for simulating the spread of infectious diseases. Journal of Biological Systems 18(04), 847–866 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Dep. of Life, Health and Environmental SciencesUniversity of L’AquilaL’AquilaItaly

Personalised recommendations