Advertisement

A Query Expansion Approach Using the Context of the Search

  • Djalila Boughareb
  • Nadir Farah
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 219)

Abstract

In this paper; we propose a solution to one of the most known problems in information retrieval field which is the ambiguity of short queries. In fact, short queries are often ambiguous and their execution by search tools engenders a lot of noise. The proposed contribution consists of a query expansion approach that exploits the recent browsing history of the user and the time parameter to expand short queries based on the feedback returned by the users having search behaviours similar to that of the current user.

Keywords

Information Retrieval search context query expansion recent interest 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouidghaghen, O., Tamine, L.: Spatio-Temporal Based Personalization for Mobile search, Engineering, and Intelligent Technologies. In: Next Generation Search Engines: Advanced Models for Information Retrieval, pp. 386–409. IGI Global Publishing, PA (2012)CrossRefGoogle Scholar
  2. 2.
    Carpineto, C.: A Survey of Automatic Query Expansion in Information Retrieval. In: Carpineto, C., Romano, G., Bordoni, F.U. (eds.) ACM Computing Surveys, vol. 44(1), Article 1(2012)Google Scholar
  3. 3.
    Ciaramita, M., Murdock, V., Plachouras, V.: Online Learning from Click Data for Sponsored Search. In: Proceedings of the International World Wide Web Conference (IW3C2), WWW 2008, Beijing, China (2008)Google Scholar
  4. 4.
    Fonseca, B.M., Golgher, P.B., Possas, B., Ribeiro-Neto, B.A., Ziviani, N.: Concept-based interactive query expansion. In: CIKM, pp. 696–703 (2005)Google Scholar
  5. 5.
    Kanaan, G., Al-Shalabi, R., Ghwanmeh, S., Bani-Ismail, B.: Interactive and Automatic Query Expansion: A Comparative study with an Application on Arabic. American Journal of Applied Sciences 5(11), 1433–1436 (2008)CrossRefGoogle Scholar
  6. 6.
    Klassen, M., Paturi, N.: Web Document Classification by Keywords Using Random Forests. In: Zavoral, F., Yaghob, J., Pichappan, P., El-Qawasmeh, E. (eds.) NDT 2010. CCIS, vol. 88, pp. 256–261. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Lv, Y., Zhai, C.: Positional relevance model for pseudo-relevance feedback. In: Proceeding of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2010, pp. 579–586 (2010)Google Scholar
  8. 8.
    Rosenblatt, F.: The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Journal of Psychological Review 65(6), 386–408 (1958)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ruthven, I.: Re-examining the Potential Effectiveness of Interactive Query Expansion. In: Proceedings of ACM SIGIR 2003, Toronto, Canada (2003)Google Scholar
  10. 10.
    Said, A., De Luca, E.W., Albayrak, S.: Inferring Contextual User Profiles–Improving Recommender Performance. In: 3rd RecSys Workshop on Context-Aware Recommender Systems, Chicago, IL, USA (2011)Google Scholar
  11. 11.
    Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing. Communications of the ACM 18(11), 613–620 (1975)MATHCrossRefGoogle Scholar
  12. 12.
    Song, M., Song, I., Hu, X., Allen, R.B.: Integration of association rules and ontologies for semantic query expansion. Journal of Data & Knowledge Engineering 63(1), 63–75 (2007)CrossRefGoogle Scholar
  13. 13.
    Wang, H., Liang, Y., Fu, L., Xue, G.-R., Yu, Y.: Efficient query expansion for advertisement search. In: Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 51–58. ACM Press, Boston (2009)Google Scholar
  14. 14.
    Zhao, Q., Hoi, S.C.H., Liu, T.Y., Bhowmick, S.S., Lyu, M.R., Ma, W.Y.: Time-Dependent Semantic Similarity Measure of Queries Using Historical Click-Through Data. In: Proceedings of the 15th International Conference on World Wide Web, pp. 543–552. ACM, Edinburgh (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.LabGED Laboratory, Computer Science DepartmentBadji Mokhtar-Annaba UniversityAnnabaAlgeria

Personalised recommendations