Face Detection in Intelligent Ambiences with Colored Illumination

  • Christina Katsimerou
  • Judith A. Redi
  • Ingrid Heynderickx
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 219)


Human face detection is an essential step in the creation of intelligent lighting ambiences, but the constantly changing multi-color illumination makes reliable face detection more challenging. Therefore, we introduce a new face detection and localization algorithm, which retains a high performance under various indoor illumination conditions. The method is based on the creation of a robust skin mask, using general color constancy techniques, and the application of the Viola-Jones face detector on the candidate face areas. Extensive experiments, using a challenging state-of-the-art database and a new one with a wider variation in colored illumination and cluttered background, show a significantly better performance for the newly proposed algorithm than for the most widely used face detection algorithms.


intelligent ambiences adaptive lighting face detection skin segmentation color constancy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aarts, E.: Ambient Intelligence – “Visualizing the future”. In: Proc. Conf. Smart Objects & Amb. Intelligence (2005)Google Scholar
  2. 2.
    Gijsenij, A., Gevers, T.: http://colorconstancy.com
  3. 3.
    Bradley, D.: Profile face detection (November 5, 2003), http://www.davidbradley.info/publications/bradley-iurac-03.swf
  4. 4.
    Buchsbaum, G.: A spatial processor model for object color perception. J. of the Franklin Institute 310(1), 1–26 (1980)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Castrillón, M., Déniz, O., Hernández, D., Lorenzo, J.: A comparison of face and facial feature detectors based on the Viola- Jones general Object detection Framework. Machine Vision and Applications 22, 481–494 (2011)Google Scholar
  6. 6.
    Chai, D., Ngan, K.N.: Face segmentation using skin color map in videophone applications. IEEE Trans. Circuits and Systems for Video Technology 9(4), 551–564 (1999)CrossRefGoogle Scholar
  7. 7.
    Chen, H.Y., Huang, C.L., Fu, C.M.: Hybrid-boost learning for multi-pose face detection and facial expression recognition. Pattern Recognition 41(3), 1173–1185 (2008)MATHCrossRefGoogle Scholar
  8. 8.
    Erdem, E., Ulukaya, S., Karaali, A.: Combining Haar feature and skin color based classifiers for face detection. In: IEEE Int’l Conf. on Acoustics, Speech and Signal Processing (ICASSP), pp. 1497–1500 (2011)Google Scholar
  9. 9.
    Finlayson, G., Trezzi, E.: Shades of gray and color constancy. In: Color Image Conference, pp. 37–41 (2004)Google Scholar
  10. 10.
    Hsu, R.L., Abdel-Mottaleb, M., et al.: Face detection in color images. IEEE transactions on pattern analysis and machine intelligence 24(5) (2002)Google Scholar
  11. 11.
    Intel, Intel Open Source Computer Vision Library, http://sourceforge.net/projects/opencvlibrary/
  12. 12.
    Kim, B., Ban, S.-W., Lee, M.: Improving adaBoost based face detection using face-color preferable selective attention. In: Fyfe, C., Kim, D., Lee, S.-Y., Yin, H. (eds.) IDEAL 2008. LNCS, vol. 5326, pp. 88–95. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Kuijsters, A., Redi, J.A., de Ruiter, B., Heynderickx, I.: Effects of ageing on atmosphere perception. In: The Process of Being Published in Proceedings of Experiencing Light (2012)Google Scholar
  14. 14.
    Land: The retinex theory of color vision. Scientific American 237(6), 108–128 (1977)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lienhart, R., Maydt, J.: An Extended Set of Haar- like Features for Rapid Objects Detection. In: IEEE ICIP 2002, vol. 1, pp. 900–903 (2002)Google Scholar
  16. 16.
    Phung, S.L., Bouzerdoum, A., Chai, D.: Skin Segmentation using color pixel classification: Analysis and Comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(1) (2005)Google Scholar
  17. 17.
    Reimondo, A.: Haar cascades repository (2007), http://alereimondo.no-ip.org/OpenCV/34
  18. 18.
    Riemersma-van der Lek, R.F., Swaab, D.F., et al.: Effect of Bright Light and Melatonin on Cognitive and Noncognitive Function in Elderly Residents of Group Care Facilities: A Randomized Controlled Trial. JAMA 299(22), 2642–2655 (2008)CrossRefGoogle Scholar
  19. 19.
    Sobottka, K., Pitas, I.: A Novel Method for Automatic Face Segmentation: Facial Feature extraction and tracking. Signal Processing: Image Comm. 12(3), 263–281 (1998)CrossRefGoogle Scholar
  20. 20.
    Sim, T., Baker, S., Bsat, M.: The CMU Pose, Illumination, and Expression (PIE) Database. In: Proc. Int’l Conf. Face and Gesture Recognition, pp. 46–51 (2002)Google Scholar
  21. 21.
    de Weijer, J.V., Gevens, T., Gijsenij, A.: Edge based color constancy. IEEE Transactions on Image Processing 16(9), 2207–2214 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    von Kries, J.: Chromatic adaptation. Festschrift der Albrecht-Ludwigs-Universität (1902); Translation: D.L. Mac Adam, Colorimetry- Fundamentals, SPIE Milestone Series, vol. MS 77, (1993)Google Scholar
  23. 23.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. of the Conf. on Computer Vision and Pattern Recognition, CVPR 2001 (2001)Google Scholar
  24. 24.
    Zhang, C., Zhang, Z.: A survey of recent advances in face detection. Microsoft Research,, 5 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Christina Katsimerou
    • 1
  • Judith A. Redi
    • 1
  • Ingrid Heynderickx
    • 1
  1. 1.Department of Intelligent SystemsTU DelftDelftThe Netherlands

Personalised recommendations