Advertisement

Stator Faults Detection and Diagnosis in Reactor Coolant Pump Using Kohonen Self-organizing Map

  • Smail Haroun
  • Amirouche Nait Seghir
  • Said Touati
Part of the Studies in Computational Intelligence book series (SCI, volume 488)

Abstract

Nuclear power industries have increasing interest in using fault detection and diagnosis (FDD) methods to improve availability, reliability, and safety of nuclear power plants (NPP). In this paper, a procedure for stator fault detection and severity evaluation on reactor coolant pump (RCP) driven by induction motor is presented. Fault detection system is performed using unsupervised artificial neural networks: the so-called Self-Organizing Maps (SOM). Induction motor stator currents are measured, recorded, and used for feature extraction using Park transform, Zero crossing times signal, and the envelope, then statistical features are calculated from each signal which serves for feeding the neural network, in order to perform the fault diagnosis. This network is trained and validated on experimental data gathered from a three-phase squirrelcage induction motor. It is demonstrated that the strategy is able to correctly identify the stator fault and safe cases. The system is also able to estimate the extent of the stator faults.

Keywords

Self-Organizing Map Reactor coolant Pump Fault Detection and diagnosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yan, G., Zhu, Y.: Application research of local support vector machines in condition trend prediction of reactor coolant pump. In: Yu, W., Sanchez, E.N. (eds.) Advances in Computational Intelligence. AISC, vol. 61, pp. 35–43. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Aboubou, A., Sahraoui, M., Ghougal, A., Zouzou, S.E.: Analyse du contenu spectral de la tension de neutre de la machine asynchrone en vue de son diagnostic. Courrier du Savoir – N°06, pp.95–102 (June 2005)Google Scholar
  3. 3.
    Maa, J., Jiang, J.: Applications of fault detection and diagnosis methods in nuclear power plants: A review. Progress in Nuclear Energy 53, 255–266 (2011)CrossRefGoogle Scholar
  4. 4.
    Weerasinghe, M., Barry Gomm, J., Williams, D.: Neural networks for fault diagnosis of a nuclear fuel processing plant at different operating points. Control Engineering Practice 6, 281–289 (1998)CrossRefGoogle Scholar
  5. 5.
    Bae, H., Chun, S.-P., Kim, S.: Predictive Fault Detection and Diagnosis of Nuclear Power Plant Using the Two-Step Neural Network Models. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3973, pp. 420–425. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Yangping, Z., Bingquan, Z., DongXin, W.: Application of genetic algorithms to fault diagnosis in nuclear power plants. Reliability Engineering and System Safety 67, 153–160 (2000)CrossRefGoogle Scholar
  7. 7.
    Xiao-cheng, S., Chun-ling, X., Yuan-hui, W.: Nuclear power plant fault diagnosis based on genetic-RBF neural network. Journal of Marine Science and Application 5(3), 57–62 (2006)CrossRefGoogle Scholar
  8. 8.
    Ming-Yu, F., Xin-Qian, B., Ji, S.: Fault Diagnosing System of Steam Generator for Nuclear Power Plant Based on Fuzzy Neural Networks. Journal of Marine Science and Application 1(1), 41–46 (2002)CrossRefGoogle Scholar
  9. 9.
    Kohonen, T.: Self-Organizing Maps. Springer, Berlin (2001)CrossRefMATHGoogle Scholar
  10. 10.
    Bossio, J.M., De Angelo, C.H., Bossio, G.R., García, G.O.: Fault Diagnosis on Induction Motors Using Self-Organizing Maps. In: 9th IEEE/IAS International Conference on Industry Applications, INDUSCON 2010 (2010)Google Scholar
  11. 11.
    Aroui, T., Koubaa, Y., Toumi, A.: Clustering of the Self-Organizing Map based Approach in Induction Machine Rotor Faults Diagnostics. Leonardo Journal of Sciences, 1–14 (2009)Google Scholar
  12. 12.
    Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Self-organizing map in Matlab: the SOM Toolbox. In: Proceedings of the Matlab DSP Conference 1999, Espoo, Finland, November 16-17, pp. 35–40 (1999), http://www.cis.hut.fi/projects/somtoolbox
  13. 13.
    Cardoso, A.J.M., Cruz, S.M.A., Fonseca, D.S.B.: Inter-Turn Stator Winding Fault Diagnosis in Three-phase Induction Motors, by Park’s Vector Approach. IEEE Transactions on Energy Conversion 14(3) (September 1999)Google Scholar
  14. 14.
    Arabacı, H., Bilgin, O.: Detection of Rotor Bar Faults by Using Stator Current Envelope. In: Proceedings of the World Congress on Engineering, WCE 2011, London, U.K., July 6 - 8, vol. II (2011)Google Scholar
  15. 15.
    da Silva, A.M.: Induction motor fault diagnostic and monitoring methods. A Master Thesis, Marquette University, Milwaukee, Wisconsin (May 2006)Google Scholar
  16. 16.
    Ukil, A., Chen, S., Andenna, A.: Detection of stator short circuit faults in three-phase induction motors using motor current zero crossing instants. Electric Power Systems Research 81, 1036–1044 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Smail Haroun
    • 1
  • Amirouche Nait Seghir
    • 1
  • Said Touati
    • 2
  1. 1.Laboratoire des Systèmes Electriques et Industriels (LSEI), Faculté d’électronique et InformatiqueUSTHBAlgerAlgérie
  2. 2.Département de Génie électrique (DGE)Centre de Recherche Nucleaire de Birine (CRNB)Ain OusseraAlgerie

Personalised recommendations