Dynamic Bayesian Networks in Dynamic Reliability and Proposition of a Generic Method for Dynamic Reliability Estimation

  • Fatma Zohra Zahra
  • Saliha Khouas-Oukid
  • Yasmina Assoul-Semmar
Part of the Studies in Computational Intelligence book series (SCI, volume 488)


In this paper, we review briefly the different works published in the field of Dynamic Bayesian Network (DBN) reliability analyses and estimation, and we propose to use DBNs as a tool of knowledge extraction for constructing DBN models modeling the reliability of systems. This is doing, by exploiting the data of (tests or experiences feedback) taken from the history of the latter’s. The built model is used for estimating the system reliability via the inference mechanism of DBNs. The proposed approach has been validated using known system examples taken from the literature.


dependability analysis dynamic Bayesian networks structure learning knowledge discovery dynamic reliability estimation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Helge, L., Luigi, P.: Bayesian Networks in Reliability. Reliability Engineering and System Safety 92, 92–108 (2006)Google Scholar
  2. 2.
    Weber, P., Medina-Oliva, G., Simon, C., Iung, B.: Overview on Bayesian networks and applications for dependability, risk analysis and maintenance areas. In: Engineering Applications of Artificial Intelligence (2010)Google Scholar
  3. 3.
    Jose, O.D., Ramirez-Marquez, E.: A generic method for Estimating System Reliability using Bayesian networks. Reliability Engineering and System Safety 94, 542–550 (2009)CrossRefGoogle Scholar
  4. 4.
    Zio, E.: Reliability Engineering: Old Problems and New Challenges. Reliability Engineering and System Safety 95, 125–141 (2009)CrossRefGoogle Scholar
  5. 5.
    Uffe, B., Kjbrulff-Anders, L.: Bayesian Networks and Influence Diagrams A Guide to Construction and Analysis. Springer Science + Business Media, LLC (2008)Google Scholar
  6. 6.
    Boudali, H., Dugan, J.B.: A discrete-time Bayesian Network Reliability Modeling and Analysis Framework. Reliability Engineering and System Safety 87, 337–349 (2005)CrossRefGoogle Scholar
  7. 7.
    Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Proc. Conf. It Uncertainty in AI (UAI), Madison, WI (1998)Google Scholar
  8. 8.
    Arroyo-Figueroa, G., Sucar, L.E.: Temporal Bayesian Network of Events for Diagnosis and Prediction in Dynamic Domains. Manufactured in the Netherlands Applied Intelligence. 23, 77–86 (2005)CrossRefGoogle Scholar
  9. 9.
    Bobbio, A., Portinale, L., Minichinob, M., Ciancamerlab, E.: Improving the analysis of dependable systems by mapping fault trees Into Bayesian networks. Reliability Engineering and System Safety 71, 249–260 (2001)CrossRefGoogle Scholar
  10. 10.
    Montani, S., Portinale, L., Bobbio, A.: Dynamic Bayesian Networks for Modeling Advanced Fault Tree features. In: Kolowrocki, K. (ed.) Proceedings of the European Safety and Reliability Conference (ESREL 2005). Balkema Publisher, Tri City (2005)Google Scholar
  11. 11.
    Montani, S., Portinale, L., Bobbio, A., Codetta-Raiteri, D.: RADYBAN: A Tool for Reliability Analysis of dynamic fault trees-through conversion Into Dynamic Bayesian networks. Reliability Engineering and System Safety 93, 922–932 (2008)CrossRefGoogle Scholar
  12. 12.
    Portinale, L., Codette Raiteri, D., Montani, S.: Supporting Reliability engineers in Exploiting The Power of Dynamic Bayesian Networks. International Journal of Approximate Reasoning 51, 179–195 (2010)CrossRefGoogle Scholar
  13. 13.
    Boudali, B., Dugan, B.J.: A Continuous-Time Bayesian Network Reliability Framework Modelin and Analysis. IEEE Transactions on Reliability 55, 86–87 (2006)CrossRefGoogle Scholar
  14. 14.
    Weber, P., Munteanu, P., Jouffe, L.: Dynamic Bayesian Networks Modelling the dependability of degradations and exogenous Systems with Constraints. In: Proceedings of the 11th IFAC Symposium on Information Control Problems in Manufacturing (INCOM 2004), Salvador-Bahia, Brazil (2004)Google Scholar
  15. 15.
    Weber, P., Jouffe, L.: Complex System Reliability modeling With Dynamic Object Oriented Bayesian Networks (DOOBN). Reliability Engineering and System Safety 91, 149–162 (2006)CrossRefGoogle Scholar
  16. 16.
    Hosseini, S.M.H., Takahashi, M.: Combining Static/Dynamic Fault Trees and Event Trees Using Bayesian Networks. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007. LNCS, vol. 4680, pp. 93–99. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Lampe, M., Andrews, J.D.: Bayesian Belief Networks for System Fault Diagnostics. Quality and Reliability Engineering International 25, 409–426 (2009)CrossRefGoogle Scholar
  18. 18.
    Sigurdsson, J.H., Wall, T., Quigley, J.L.: Bayesian Belief Net for managing expert Judgement and modeling reliability. Quality and Reliability Engineering International 17, 181–190 (2001)CrossRefGoogle Scholar
  19. 19.
    Murphy, P.K.: Dynamic Bayesian Networks: Representation, Inference and Learning. PHD Thesis, University of California, Berkeley (2002)Google Scholar
  20. 20.
    Daly, R., Shen, Q.: Learning Bayesian network equivalence classes with ant colony optimization. Journal of Artificial Intelligence Research 35, 391–447 (2009)MathSciNetMATHGoogle Scholar
  21. 21.
    Ghahramani, Z.: Learning Dynamic Bayesian Networks. In: Giles, C.L., Gori, M. (eds.) IIASS-EMFCSC-School 1997. LNCS (LNAI), vol. 1387, pp. 168–197. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Guillaume, M., Jean-Marc, R.: Modélisation algébrique des arbres de défaillance temporels. In: JD-MACS 2007 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Fatma Zohra Zahra
    • 1
  • Saliha Khouas-Oukid
    • 2
  • Yasmina Assoul-Semmar
    • 3
  1. 1.High School of computer scienceAlgiersAlgeria
  2. 2.Computer Science DepartmentSaad Dahlab UniversityBlidaAlgeria
  3. 3.Department of AeronauticsSaad Dahlab UniversityBlidaAlgeria

Personalised recommendations