Initializing the Tutor Model Using K-Means Algorithm

  • Safia Bendjebar
  • Yacine Lafifi
Part of the Studies in Computational Intelligence book series (SCI, volume 488)


This paper proposes an approach for the initialization and the construction of tutor’s model in the e-learning systems. This actor has several roles and different tasks from a system to another. His main purpose is tracking and guiding students throughout their learning process. In their first interaction, the system has rather little information about its new tutors. The proposed approach serves to offer much information for each specific tutor based on the models of other similar tutors. The problem of initializing the tutor model can be resolved by assigning the tutor to certain group of tutors. Thus, a data mining algorithm, namely k-means is responsible for creating clusters based on the preentered information on tutors. Then, each new tutor is assigned to his closest cluster center. This model facilitates the assignment of tutors to learners for adapting the monitoring process.


E-learning Tutoring Tutor model Profile Initialization K-means 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sani, M.R., Mohammadian, N., Hoseini, M.: Ontological learner modeling. In: WCES 2012, ProcediaSocial and Behavioral Sciences, vol. 46, pp. 5238–5243 (2012)Google Scholar
  2. 2.
    Depoyer, C., De Lièvre, B., Peraya, D., Quintin, J.-J., Jailler, A.: Le tutorat en formation à distance. Perspectives en éducation & formation, DeBoeck (2011)Google Scholar
  3. 3.
    Klösgen, W., Zytkow, J.: Handbook of data mining and knowledge discovery, p. 1064. Oxford University Press, NewYork (2002)MATHGoogle Scholar
  4. 4.
    Liu, X., Zhang, L., Yadegar, J., Kamat, N.: A Robust Multimodal Emotion Recognition Framework for Intelligent Tutoring Systems. In: 11th IEEEInternationalConference on Advanced Learning Technologies, Los Angeles, CA, USA, pp. 63–65 (2011)Google Scholar
  5. 5.
    Bharadwaj, B.K., Pal, S.: Mining Educational Data to Analyze Students’ Performance. International Journal of Advance Computer Science and Applications (IJACSA) 2(6), 63–69 (2011)Google Scholar
  6. 6.
    Rodrigo, M.M.T., Anglo, E.A., Sugay, J.O., Baker, R.S.J.d.: Use of UnsupervisedClustering to Characterize Learner Behaviors and Affective States while Using anIntelligent Tutoring System. In: Proceedings of International Conference on Computers in Education, Taipei, Taiwan, pp. 392–401 (2008)Google Scholar
  7. 7.
    Garrot, E.: Plate-forme support à l’interconnexion de communautés de pratique (ICP). application au tutorat avec TE-Cap. PhDThesis, INSA Lyon, France (2008)Google Scholar
  8. 8.
    Rodet, J.: Tuteur à Distance, Entre Fonction et Métier.(2008), (accessed at: October 01, 2012)
  9. 9.
    Lekira, A.R.: Rendre compte des effets des interventions des tuteurs à travers uneApproche Orientée Indicateurs. PhDThesis, MaineUniversity, France (2012)Google Scholar
  10. 10.
    Lafifi, Y., Azzouz, K., Faci, H., Herkas, W.: Dynamic Management of Tutor’sRoles in an Online Learning System. International Journal of Learning Technology (IJLT) 5(2), 103–129 (2010)CrossRefGoogle Scholar
  11. 11.
    Tsiriga, V., Virvou, M.: Dynamically initializing the student model in a web-basedlanguage tutor. In: Proceedings of the 2002 First International IEEE Symposium“Intelligent Systems”, vol. 1, pp. 138–143. IEEE Computer Society Press, Piraeus Univ (2002)CrossRefGoogle Scholar
  12. 12.
    Rich, E.: User modelling via stereotypes. Cognitive Science 3(4), 329–354 (1979)CrossRefGoogle Scholar
  13. 13.
    Aïmeur, E., Brassard, G., Dufort, H., Gambs, S.: CLARISSE: A machine learning tool to initialize student models. In: Cerri, S.A., Gouardéres, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 718–728. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Bontcheva, K.: Adaptivity, adaptability, and reading behaviour: Some results from the evaluation of a dynamic hypertext system. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS, vol. 2347, pp. 69–78. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Zhao, C., Sun, Z., Liu, Q., Shang, C., Shen, D.: Initializing Students Models for theOnline Network Educational Systems. In: Proceedings of the 35th Annual Conference on Frontiers in Education, FIE 2005, China, pp. 14–17 (2005)Google Scholar
  16. 16.
    Virvou, M., Alepis, E., Troussas, C.: Centroid-based clustering for student modelsin computer-based multiple language tutoring. In: Proceedings of the InternationalConference on Signal Processing and Multimedia Applications and InternationalConference on Wireless Information Networks and Systems (SIGMAP), Rome, Italy, pp. 198–203 (2012)Google Scholar
  17. 17.
    Tsiriga, V., Virvou, M.: Initializing the Student Model using Stereotypes and Machine learning. In: El Kamel, A., Mellouli, K., Borne, P. (eds.) Proceedings of the 2002 IEEE International Conference on System, Man and Cybernetics, pp. 404–409 (2002)Google Scholar
  18. 18.
    Mardia, K., Kent, J.T., Bibby, J.M.: Multivariate Analysis, p. 521. Academic Press, London (1979)MATHGoogle Scholar
  19. 19.

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.LabSTIC LaboratoryUniversity of 8 May 1945 GuelmaGuelmaAlgeria

Personalised recommendations