Towards an Integrated Specification and Analysis of Functional and Temporal Properties:

Part I: Functional Aspect Verification
  • Mokdad Arous
  • Djamel-Eddine Saïdouni
Part of the Studies in Computational Intelligence book series (SCI, volume 488)

Abstract

Maximality-based Labeled Stochastic Transition Systems (MLSTS) was presented [6, 11] as a new semantic model for characterizing the functional and performance properties of concurrent systems, under the assumption of arbitrarily distributed (i.e. non-Markovian) durations of actions. The MLSTS models can be automatically generated from S-LOTOS specifications according to the (true concurrency) maximality semantics [6]. The main advantage is to pruning the state graph without loss of information w.r.t. ST-semantic models [11]. As a first work on MLSTS, we focus in this paper on in the verification of functional properties of systems, using a variant of model-checking technique.

Keywords

CTL Formal Verification Maximality Semantics Model- Checking Semantic Models Labeled Transition Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clark, A., Gilmore, S., Hillston, J., Tribastone, M.: Stochastic Process Algebras. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 132–179. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Haverkort, B.R.: Markovian models for performance and dependability evaluation. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) FMPA 2000. LNCS, vol. 2090, pp. 38–83. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Saïdouni, D.E., Courtiat, J.P.: Prise en compte des durées d’action dans les algèbres de processus par l’utilisation de la sémantique de maximalité, In. In: Proceedings of CFIP 2003, Hermes, France (2003)Google Scholar
  4. 4.
    Saidouni, D.E.: Sémantique de maximalité: Application au raffinement d’actions en LOTOS, PhD Thesis, LAAS-CNRS, 7 av. du Colonel Roche, 31077. Toulouse Cedex France (1996)Google Scholar
  5. 5.
    Lamport, L.: What good is temporal logic? In: Manson, R.E.A. (ed.) Information Processing. IFIP, vol. 83, pp. 657–668. Elsevier Science Publishers B.V., North Holland (1983)Google Scholar
  6. 6.
    Arous, M., Ilié, J.M., Saidouni, D.E.: A Compact Semantic Model for Characterization of Stochastic Temporal Properties of Concurrent Systems. IJCSI International Journal of Computer Science Issues 96(1) (November 2012)Google Scholar
  7. 7.
    Stewart, W.J.: Performance modelling and markov chains. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 1–33. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LOTOS. Computer Networks and ISDN Systems 14, 25–59 (1987)CrossRefGoogle Scholar
  9. 9.
    Hillston, J.: Process Algebras for Quantitative Analysis. In: Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science (LICS 2005), pp. 239–248 (2005)Google Scholar
  10. 10.
    Katoen, J.-P., D’Argenio, P.R.: General distributions in process algebra. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) FMPA 2000. LNCS, vol. 2090, pp. 375–429. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Arous, M., Saidouni, D.E., Ilié, J.M.: Addressing State Space Explosion Problem in Performance Evaluation Using Maximality-based Labeled Stochastic Transition Systems. In: IPCSIT, vol. 54, pp. 41–48. IACSIT Press, Singapore (2012); Proceedings of the 2nd International Conference on Computer and Software Modeling (ICCSM 2012), Cochin, IndiaGoogle Scholar
  12. 12.
    Arous, M., Saidouni, D.E., Ilié, J.M.: Maximality Semantics based Stochastic Process Algebra for Performance Evaluation. In: 1st IEEE International Conference on Communications, Computing and Con-trol Applications (CCCA 2011), Hammamet, Tunisia, March 3-5 (2011)Google Scholar
  13. 13.
    Bernardo, M.: Theory and Application of Extended Markovian Process Algebra. Ph.D. Thesis, University of Bologna, Italy (1999)Google Scholar
  14. 14.
    Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov processes. Theoretical Computer Science 282, 5–32 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Bravetti, M., Bernardo, M., Gorrieri, R.: Towards performance evaluation with general distributions in process algebras. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 405–422. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Bravetti, M.: Specification and Analysis of Stochastic Real-time Systems. PhD thesis, Università di Bologna, Padova, Venezia (2002)Google Scholar
  17. 17.
    D’Argenio, P.R., Katoen, J.-P.: A theory of stochastic systems. Part II: Process algebra. Information and Computation 203, 39–74 (2005)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on Programming Languages and Systems 8(2), 244–263 (1986)CrossRefMATHGoogle Scholar
  19. 19.
    Schnoebelen, P.: The Complexity of Temporal Logic Model Checking. In: Advances in Modal Logic, pp. 393–436 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Mokdad Arous
    • 1
  • Djamel-Eddine Saïdouni
    • 1
  1. 1.MISC LaboratoryMentouri UniversityConstantineAlgeria

Personalised recommendations