Towards an Integrated Specification and Analysis of Functional and Temporal Properties:

Part I: Functional Aspect Verification
  • Mokdad Arous
  • Djamel-Eddine Saïdouni
Part of the Studies in Computational Intelligence book series (SCI, volume 488)


Maximality-based Labeled Stochastic Transition Systems (MLSTS) was presented [6, 11] as a new semantic model for characterizing the functional and performance properties of concurrent systems, under the assumption of arbitrarily distributed (i.e. non-Markovian) durations of actions. The MLSTS models can be automatically generated from S-LOTOS specifications according to the (true concurrency) maximality semantics [6]. The main advantage is to pruning the state graph without loss of information w.r.t. ST-semantic models [11]. As a first work on MLSTS, we focus in this paper on in the verification of functional properties of systems, using a variant of model-checking technique.


CTL Formal Verification Maximality Semantics Model- Checking Semantic Models Labeled Transition Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clark, A., Gilmore, S., Hillston, J., Tribastone, M.: Stochastic Process Algebras. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 132–179. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Haverkort, B.R.: Markovian models for performance and dependability evaluation. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) FMPA 2000. LNCS, vol. 2090, pp. 38–83. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Saïdouni, D.E., Courtiat, J.P.: Prise en compte des durées d’action dans les algèbres de processus par l’utilisation de la sémantique de maximalité, In. In: Proceedings of CFIP 2003, Hermes, France (2003)Google Scholar
  4. 4.
    Saidouni, D.E.: Sémantique de maximalité: Application au raffinement d’actions en LOTOS, PhD Thesis, LAAS-CNRS, 7 av. du Colonel Roche, 31077. Toulouse Cedex France (1996)Google Scholar
  5. 5.
    Lamport, L.: What good is temporal logic? In: Manson, R.E.A. (ed.) Information Processing. IFIP, vol. 83, pp. 657–668. Elsevier Science Publishers B.V., North Holland (1983)Google Scholar
  6. 6.
    Arous, M., Ilié, J.M., Saidouni, D.E.: A Compact Semantic Model for Characterization of Stochastic Temporal Properties of Concurrent Systems. IJCSI International Journal of Computer Science Issues 96(1) (November 2012)Google Scholar
  7. 7.
    Stewart, W.J.: Performance modelling and markov chains. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 1–33. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LOTOS. Computer Networks and ISDN Systems 14, 25–59 (1987)CrossRefGoogle Scholar
  9. 9.
    Hillston, J.: Process Algebras for Quantitative Analysis. In: Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science (LICS 2005), pp. 239–248 (2005)Google Scholar
  10. 10.
    Katoen, J.-P., D’Argenio, P.R.: General distributions in process algebra. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) FMPA 2000. LNCS, vol. 2090, pp. 375–429. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Arous, M., Saidouni, D.E., Ilié, J.M.: Addressing State Space Explosion Problem in Performance Evaluation Using Maximality-based Labeled Stochastic Transition Systems. In: IPCSIT, vol. 54, pp. 41–48. IACSIT Press, Singapore (2012); Proceedings of the 2nd International Conference on Computer and Software Modeling (ICCSM 2012), Cochin, IndiaGoogle Scholar
  12. 12.
    Arous, M., Saidouni, D.E., Ilié, J.M.: Maximality Semantics based Stochastic Process Algebra for Performance Evaluation. In: 1st IEEE International Conference on Communications, Computing and Con-trol Applications (CCCA 2011), Hammamet, Tunisia, March 3-5 (2011)Google Scholar
  13. 13.
    Bernardo, M.: Theory and Application of Extended Markovian Process Algebra. Ph.D. Thesis, University of Bologna, Italy (1999)Google Scholar
  14. 14.
    Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov processes. Theoretical Computer Science 282, 5–32 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Bravetti, M., Bernardo, M., Gorrieri, R.: Towards performance evaluation with general distributions in process algebras. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 405–422. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Bravetti, M.: Specification and Analysis of Stochastic Real-time Systems. PhD thesis, Università di Bologna, Padova, Venezia (2002)Google Scholar
  17. 17.
    D’Argenio, P.R., Katoen, J.-P.: A theory of stochastic systems. Part II: Process algebra. Information and Computation 203, 39–74 (2005)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on Programming Languages and Systems 8(2), 244–263 (1986)CrossRefMATHGoogle Scholar
  19. 19.
    Schnoebelen, P.: The Complexity of Temporal Logic Model Checking. In: Advances in Modal Logic, pp. 393–436 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Mokdad Arous
    • 1
  • Djamel-Eddine Saïdouni
    • 1
  1. 1.MISC LaboratoryMentouri UniversityConstantineAlgeria

Personalised recommendations