Modeling On-the-Spot Learning: Storage, Landmarks Weighting Heuristic and Annotation Algorithm

  • Shivendra Tiwari
  • Saroj Kaushik
Part of the Studies in Computational Intelligence book series (SCI, volume 488)


Huge information is intrinsically associated with certain places in the globe such as historical, geographical, cultural and architectural specialties. The next generation systems require access of the site specific information where the user is roaming at the moment. The on-the-spot learning (OTSL) is a system that allows the users to learn about the location, landmarks, regions where he/she is walking through. In this paper, we have proposed an OTSL model that includes the storage, retrieval and the landmark weighting heuristic. Apart from learning about the individual landmarks, we have proposed two ways of storing the spatial learning objects. First, use the administrative hierarchy of the region to fetch the information. This can be easily done by the reverse-geocoding operation without actually storing the physical hierarchy. Second, spatial chunking, creates the region based on the groups of landmarks in order to define a learning region. A hybrid solution has also been considered to achieve the advantages of both the region based methods. We use a weighting model to select the correct landmarks in the basic model. We extend the core model to include other factors such as speed, direction, side of the road etc. A prototype has been implemented to show the feasibility of the proposed model.


On-the-Spot Learning (OTSL) Location Based Tour Guide Landmark Based Learning Region of Interest (ROI) Point of Interest (POI) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tiwari, S., et al.: Fusion of Navigation Technology and E-Learning Systems for On-the-spot Learning. In: Proc. of ICWCA 2012, Kuala Lumpur, Malaysia, October 8-10 (2012)Google Scholar
  2. 2.
    Duckham, M., et al.: Including Landmarks in Routing Instructions. Journal of Location Based Services 4(1), 28–52 (2010)CrossRefGoogle Scholar
  3. 3.
    Uddin, M., et al.: Finding Regions of Interest from Trajectory Data. In: MDM 2011 (2011)Google Scholar
  4. 4.
    Alvares, L.O., et al.: A model for enriching trajectories with semantic geographical information. In: Proc. of ACM-GIS 2007 (2007)Google Scholar
  5. 5.
    Klippel, A., et al.: Urban granularities: a data structure for cognitively ergonomic route directions. GeoInformatica 13(2), 223–247 (2009)CrossRefGoogle Scholar
  6. 6.
    Shao, J., et al.: Easiest-to-Reach Neighbor Search. In: Proc. of ACM GIS 2010, San Jose, CA, USA, November 2-5 (2010)Google Scholar
  7. 7.
    Richter, K.-F.: Context-specific route directions, Berlin. Monograph series of the transregional collaborative research center, vol. 3 (2008)Google Scholar
  8. 8.
    Raubal, M., Winter, S.: Enriching wayfinding instructions with local landmarks. In: Egenhofer, M., Mark, D.M. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 243–259. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Nothegger, C., et al.: Computation of the salience of features. Spatial Cognition and Computation 4(2), 113–136 (2004)CrossRefGoogle Scholar
  10. 10.
    Winter, S., et al.: Focalizing measures of salience for way finding. In: Map-based Mobile Services – Theories, Methods and Implementations, pp. 127–142. Springer, Berlin (2005)Google Scholar
  11. 11.
    Kolbe, T.H.: Fuga ngernavigation und routenplanung in innensta dten und geba uden mit videos und panoramen. In: GI-technologien fur verkehr und logistik, pp. 337–356. IFGI (2002)Google Scholar
  12. 12.
    Elias, B.: Extracting landmarks with data mining methods. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 375–389. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Tomko, M., et al.: Experiential hierarchies of streets. Computers, Environment and Urban Systems 32(1), 41–52 (2008)CrossRefGoogle Scholar
  14. 14.
    Tiwari, S., et al.: Extracting Region of Interest (ROI) Details using LBS Infrastructure and Web-databases. In: Proc. of 13th International Conference on Mobile Data Management (MDM 2012). IEEE Xplore Digital Library, Bangalore (2012)Google Scholar
  15. 15.
    Cheverst, K., et al.: Developing a context-aware electronic tourist guide: Some issues and experiences. In: Proc. of the CHI 2000, Amsterdam, Netherlands (2000)Google Scholar
  16. 16.
    Schneider, G., et al.: A Location Based E-Learning System. In: Proceedings. of WEBIST (2007)Google Scholar
  17. 17.
    Abowd, G.D., et al.: Cyberguide: A mobile context-aware tour guide. Mobicom (1996)Google Scholar
  18. 18.
    Kenteris, M., et al.: Electronic mobile guides: a survey. Pers Ubiquit. Comput. (2011)Google Scholar
  19. 19.
    Sun Java Wireless Toolkit for CLDC (J2ME WTK) Overview, (last accessed on May 24, 2012)
  20. 20.
    OpenStreetMap (2011), (last accessed on Februar 24, 2012)
  21. 21.
    MER-C: Wiki-java – a lightweight Java wiki bot framework (2011), (last accessed on May 24, 2012)
  22. 22.
    WikiFormatting – The Track Project, (last accessed on May 24, 2012)
  23. 23.
    Wikixmlj: A Java API to parse Wikipedia XML dumps, (last accessed on May 24, 2012)
  24. 24.
    Tiwari, S., Kaushik, S., Jagwani, P., Tiwari, S.: A Survey on LBS: System Architecture, Trends and Broad Research Areas. In: Kikuchi, S., Madaan, A., Sachdeva, S., Bhalla, S. (eds.) DNIS 2011. LNCS, vol. 7108, pp. 223–241. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Khetarpaul, S., et al.: Mining GPS Data to Determine Interesting Locations. In: Proc. of IIWeb 2011, Hyderabad, India, March 28 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Dept. of Computer Science and Engg.IIT DelhiNew DelhiIndia

Personalised recommendations