Maximality-Based Labeled Transition Systems Normal Form

Part of the Studies in Computational Intelligence book series (SCI, volume 488)

Abstract

This paper proposes an algorithm (functional method) for reducing Maximality-based Labeled Transition Systems (MLTS) modulo a maximality bisimulation relation. For this purpose, we define a partial order relation on MLTS states according to a given maximality bisimulation relation. We prove that a reduced MLTS is unique. In other word, it provides a normal form.

Keywords

Formal concurrency semantics Maximality semantics Maximality-based labeled transition systems Bisimulation relation Complete partial order 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aceto, L., Hennessy, M.: Adding action refinement to a finite process algebra. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 506–519. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  2. 2.
    Benamira, A., Saidouni, D.E.: Maximality-based labeled transition systems normal form (extended version). Research report, MISC Laboratory, Constantine 2 University, 25000 Constantine Algeria (2013)Google Scholar
  3. 3.
    Bravetti, M., Gorrieri, R.: Deciding and axiomatizing weak st bisimulation for a process algebra with recursion and action refinement. ACM Trans. Comput. Log. 3(4), 465–520 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Courtiat, J.P., Saïdouni, D.E.: Relating maximality-based semantics to action refinement in process algebras. In: Hogrefe, D., Leue, S. (eds.) IFIP TC6/WG6.1, 7th Int. Conf. on Formal Description Techniques (FORTE 1994), pp. 293–308. Chapman & Hall (1995)Google Scholar
  5. 5.
    Devillers, R.R.: Maximality preserving bisimulation. Theor. Comput. Sci. 102(1), 165–183 (1992)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    van Glabbeek, R.: Comparative Concurrency Semantics and Refinement of Actions. Ph.D. thesis, Free University, Amsterdam (1990), Second edition available as CWI tract 109, CWI, Amsterdam (1996), http://theory.stanford.edu/~rvg/thesis.html
  7. 7.
    van Glabbeek, R.: The refinement theorem for ST-bisimulation semantics. In: Proceedings IFIP TC2 Working Conference on Programming Concepts and Methods, Sea of Gallilee, Israel, pp. 27–52. North-Holland (1990)Google Scholar
  8. 8.
    van Glabbeek, R.: Petri net models for algebraic theories of concurrency (extended abstract). In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  9. 9.
    Hennessy, M.: Concurrent testing of processes (extended abstract). In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 94–107. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  10. 10.
    Saïdouni, D.E.: Sémantique de Maximalité: Application au Raffinement d’Actions en LOTOS. Ph.D. thesis, LAAS-CNRS, 7 av. du Colonel Roche, 31077 Toulouse Cedex France (1996)Google Scholar
  11. 11.
    Saïdouni, D.E., Belala, N., Bouneb, M.: Aggregation of transitions in marking graph generation based on maximality semantics for Petri nets. In: VECoS 2008, July 2-3. eWiC Series, The British Computer Society (BCS). University of Leeds, UK (2008) ISSN: 1477-9358Google Scholar
  12. 12.
    Saïdouni, D.E., Belala, N., Bouneb, M.: Maximality-based structural operational semantics for Petri nets. In: Proceedings of Intelligent Systems and Automation(CISA 2009), Tunisia, vol. 1107, pp. 269–274. American Institute of Physics (2009) ISBN: 978-0-7354-0642-1Google Scholar
  13. 13.
    Vogler, W.: Bisimulation and action refinement. In: Jantzen, M., Choffrut, C. (eds.) STACS 1991. LNCS, vol. 480, pp. 309–321. Springer, Heidelberg (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.MISC LaboratoryConstantine 2 UniversityConstantineAlgeria
  2. 2.Computer Science Dept.University of 08 May 45GuelmaAlgeria

Personalised recommendations