Maximality-Based Labeled Transition Systems Normal Form

Part of the Studies in Computational Intelligence book series (SCI, volume 488)


This paper proposes an algorithm (functional method) for reducing Maximality-based Labeled Transition Systems (MLTS) modulo a maximality bisimulation relation. For this purpose, we define a partial order relation on MLTS states according to a given maximality bisimulation relation. We prove that a reduced MLTS is unique. In other word, it provides a normal form.


Formal concurrency semantics Maximality semantics Maximality-based labeled transition systems Bisimulation relation Complete partial order 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, L., Hennessy, M.: Adding action refinement to a finite process algebra. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 506–519. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  2. 2.
    Benamira, A., Saidouni, D.E.: Maximality-based labeled transition systems normal form (extended version). Research report, MISC Laboratory, Constantine 2 University, 25000 Constantine Algeria (2013)Google Scholar
  3. 3.
    Bravetti, M., Gorrieri, R.: Deciding and axiomatizing weak st bisimulation for a process algebra with recursion and action refinement. ACM Trans. Comput. Log. 3(4), 465–520 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Courtiat, J.P., Saïdouni, D.E.: Relating maximality-based semantics to action refinement in process algebras. In: Hogrefe, D., Leue, S. (eds.) IFIP TC6/WG6.1, 7th Int. Conf. on Formal Description Techniques (FORTE 1994), pp. 293–308. Chapman & Hall (1995)Google Scholar
  5. 5.
    Devillers, R.R.: Maximality preserving bisimulation. Theor. Comput. Sci. 102(1), 165–183 (1992)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    van Glabbeek, R.: Comparative Concurrency Semantics and Refinement of Actions. Ph.D. thesis, Free University, Amsterdam (1990), Second edition available as CWI tract 109, CWI, Amsterdam (1996),
  7. 7.
    van Glabbeek, R.: The refinement theorem for ST-bisimulation semantics. In: Proceedings IFIP TC2 Working Conference on Programming Concepts and Methods, Sea of Gallilee, Israel, pp. 27–52. North-Holland (1990)Google Scholar
  8. 8.
    van Glabbeek, R.: Petri net models for algebraic theories of concurrency (extended abstract). In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  9. 9.
    Hennessy, M.: Concurrent testing of processes (extended abstract). In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 94–107. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  10. 10.
    Saïdouni, D.E.: Sémantique de Maximalité: Application au Raffinement d’Actions en LOTOS. Ph.D. thesis, LAAS-CNRS, 7 av. du Colonel Roche, 31077 Toulouse Cedex France (1996)Google Scholar
  11. 11.
    Saïdouni, D.E., Belala, N., Bouneb, M.: Aggregation of transitions in marking graph generation based on maximality semantics for Petri nets. In: VECoS 2008, July 2-3. eWiC Series, The British Computer Society (BCS). University of Leeds, UK (2008) ISSN: 1477-9358Google Scholar
  12. 12.
    Saïdouni, D.E., Belala, N., Bouneb, M.: Maximality-based structural operational semantics for Petri nets. In: Proceedings of Intelligent Systems and Automation(CISA 2009), Tunisia, vol. 1107, pp. 269–274. American Institute of Physics (2009) ISBN: 978-0-7354-0642-1Google Scholar
  13. 13.
    Vogler, W.: Bisimulation and action refinement. In: Jantzen, M., Choffrut, C. (eds.) STACS 1991. LNCS, vol. 480, pp. 309–321. Springer, Heidelberg (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.MISC LaboratoryConstantine 2 UniversityConstantineAlgeria
  2. 2.Computer Science Dept.University of 08 May 45GuelmaAlgeria

Personalised recommendations