Automatic Detection of Contours of Circular Geologic Structures on Active Remote Sensing Images Using the Gradient Vector Flow Active Contour

  • Djelloul Mokadem
  • Abdelmalek Amine
Part of the Studies in Computational Intelligence book series (SCI, volume 488)


We try in this work to solve the problem of automatic detection of contours of circular geologic structures of the Adrar Tikertine (feuille de Tinfelki) on radar remote sensing images. The utility of these structures is irrefutable, particularly in mineral prospecting and geological cartography. To reach this goal, we use an active contour model called Gradient Vector Flow (GVF). With the difference to traditional approaches, the Gradient Vector Flow (GVF) concept includes simultaneously two operations: detection and edge link of contour points. The last one was always considered as a very complicated task in traditional approaches and must be done separately from detection of contour points. In fact, the strong point of the GVF active contours is the definition of new external force able to attract the deformable contour to concave regions, generally not attained with traditional active contours called “snakes”.


automatic detection circular geologic structures remote sensing geological cartography Gradient Vector Flow active contours 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xu, C., Prince, J.L.: Gradient Vector Flow: A New External Force for Snakes. In: IEEE Proc. Conf. on Comp. Vis. Patt. Recog, CVPR 1997 (1997)Google Scholar
  2. 2.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal of Computer Vision, 321–331 (1988)Google Scholar
  3. 3.
    Rouhana, R.: Détection des linéaments dans les images de RADARSAT par un réseau neuronique cellulaire. Master, Ecole technologique supérieure, Université du Quebec (January 1998)Google Scholar
  4. 4.
    David, E., Perthuisot, V.: Cycléaments de la province d’Alicante (Espagne). Photo-interprétation (1985)Google Scholar
  5. 5.
    Angella, F.: Modèles déformables et systèmes particulaires : application à l’extraction de structures arborescentes en analyse d’images. Thèse de Doctorat, Ecole doctorale de physiques, université de Bordeaux I. 9 (January 2001)Google Scholar
  6. 6.
    Xu, C.: Deformable models with application to human cerebral cortex reconstruction from magnetic resonance images. Ph.D. Thesis, Baltimore, Mayland (January 1999)Google Scholar
  7. 7.
    Xu, C., Prince, J.L.: Snakes, Shapes, and Gradient Vector Flow. IEEE Transactions on Image Processing 7(3) ( March 1998)Google Scholar
  8. 8.
    Esteban, C.H., Schmitt, F.: Une approche par modèle déformable pour la reconstruction 3D de haute qualité d’objets photographies. Thèse de Doctorat, Ecole Nationale Supérieure des Télécommunications, France (2004)Google Scholar
  9. 9.
  10. 10.
    Leger, C.: VISIONIQUE. Cours tutorial, école supérieure des procèdes électroniques et optiques (2002) Google Scholar
  11. 11.
    Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI 8(6), 679–697 (1986)CrossRefGoogle Scholar
  12. 12.
    Rana, P.K.: Prediction of Sea Ice Edge in the Antarctic Using GVF Snake Model. Journal geological society of India 78, 99–108 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Liu, L., Bovik, A.: Active contours with neighborhood-extending and noise-smoothing gradient vector flow external force. EURASIP Journal on Image and Video Processing (2012)Google Scholar
  14. 14.
    Schaerer, J.: Segmentation et suivi de structures par modèle déformable élastique non-linéaire. Application à l’analyse automatisée de séquences d’IRM cardiaques. thèse de doctorat, L’Institut National des Sciences Appliquées de Lyon, France (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.GeCoDe LaboratoryTahar Moulay University of SAIDASaidaAlgeria

Personalised recommendations