Evaluation of the Influence of Two-Level Clustering with BUB-Trees Indexing on the Optimization of Range Queries

Part of the Studies in Computational Intelligence book series (SCI, volume 488)

Abstract

A BUB-tree is an indexing structure based on B-trees and on a Z-order space filling curve, which transforms multidimensional data into a unique key, enabling the use of a mono-attribute index. We propose a two-level indexing structure relying on a partition of the data space into disjoint clusters. At the first level the clusters are indexed by a BUB-tree and at the second level the data of each cluster is itself indexed. Indexing the clusters provides an efficient query optimization because data filtering is performed at the cluster level, which reduces the data transferred from disk to memory. We compare the performance of our approach with single-level BUB-tree indexing on two types of queries: exact match queries and range queries, which play an important role in multidimensional databases, such as Data Warehouses or Geographic Information Systems. Our approach applies to any system supporting a partition of the attribute domains.

Keywords

Multidimensional index UB-tree B-tree Space-Filling Curve Range query optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simonet, A., Simonet, M.: Objects with views and constraints: From databases to knowledge bases. In: OOIS, pp. 182–195 (1994)Google Scholar
  2. 2.
    Bellatreche, L., Karlapalem, K., Simonet, A.: Algorithms and Support for Horizontal Class Partitioning in Object-Oriented Databases. Distributed and Parallel Databases Journal 8(2) (April 2000)Google Scholar
  3. 3.
    Berchtold, S., Keim, D.A., Kriegel, H.-P.: The x-tree: An index structure for high-dimensional data, pp. 28–39 (1996)Google Scholar
  4. 4.
    Orenstein, J.A., Merrett, T.H.: A class of data structures for associative searching. In: PODS, pp. 181–190 (1984)Google Scholar
  5. 5.
    Sagan, H.: Space-Filling Curves, 1st edn. Springer (September 1994)Google Scholar
  6. 6.
    Skopal, T., Krátký, M., Pokorný, J., Snásel, V.: A new range query algorithm for universal B-trees. Information Systems 31(6), 489–511 (2006)CrossRefGoogle Scholar
  7. 7.
    Housseno, S., Simonet, A., Simonet, M.: Ub-tree indexing for semantic query optimization of range queries. International Journal of Computer, Information and Mechatronic Engineering 35, 177–184 (2009)Google Scholar
  8. 8.
    Berchtold, S., Böhm, C., Kriegel, H.P.: The Pyramid-technique: Towards breaking the curse of dimensionality. In: SIGMOD Conference, pp. 142–153 (1998)Google Scholar
  9. 9.
    Jagadish, H.V., Rui Zhang, B.C.O.: Distance techniques. In: Shekhar, S., Xiong, H. (eds.) Encyclopedia of GIS, pp. 469–471. Springer (2008)Google Scholar
  10. 10.
    Peano, G.: Sur une courbe qui remplit toute une aire plaine. Mathematishe Annalen 36, 157–160 (1890)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hilbert, D.: Ueber die stetige Abbildung einer Line auf ein Flächenstück. Mathematische Annalen 38, 459–460 (1891)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bayer, R.: The universal B-Tree for multi-dimensional Indexing: General Concepts. In: Masuda, T., Tsukamoto, M., Masunaga, Y. (eds.) WWCA 1997. LNCS, vol. 1274, pp. 198–209. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Mokbel, M.F., Aref, W.G., Kamel, I.: Analysis of multidimensional space-filling curves. GeoInformatica 7, 179–209 (2003)CrossRefGoogle Scholar
  14. 14.
    Mokbel, M.F., Aref, W.G.: Irregularity in high-dimensional space-filling curves. Distributed and Parallel Databases 29(3), 217–238 (2011)CrossRefGoogle Scholar
  15. 15.
    Ramsak, F.: The BUB-Tree. In: Proceedings of 28 rd VLDB 2002, Hong Kong, China (2002) Google Scholar
  16. 16.
    Ozsu, M.T., Valduriez, P.: Principles of Distributed DataBase Systems. Prentice-Hall, Inc., Englewood Cliffs (1991)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.TIMC laboratoriesUniversité de GrenobleGrenobleFrance
  2. 2.AGIM laboratoriesUniversité de GrenobleGrenobleFrance

Personalised recommendations