Fuzzy Logic Based Utility Function for Context-Aware Adaptation Planning

  • Mounir Beggas
  • Lionel Médini
  • Frederique Laforest
  • Mohamed Tayeb Laskri
Part of the Studies in Computational Intelligence book series (SCI, volume 488)

Abstract

Context-aware applications require an adaptation phase to adapt to the user context. Utility functions or rules are most often used to make the adaptation planning or decision. In context-aware service based applications, context and Quality of Service (QoS) parameters should be compared to make adaptation decision. This comparison makes it difficult to create an analytical utility function. In this paper, we propose a fuzzy rules based utility function for adaptation planning. The large number of QoS and context parameters causes rule explosion problem. To reduce the number of rules and the processing time, a rules-utility function can be defined by a hierarchical fuzzy system. The proposed approach is validated by augmenting the MUSIC middleware with a fuzzy rules based utility function. Simulation results show the effectiveness of the proposed approach.

Keywords

context-awareness middleware adaptation planning QoS fuzzy logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-based self-adaptation with reusable infrastructure. Computer 37(10), 46–54 (2004)CrossRefGoogle Scholar
  2. 2.
    Romero, D., Hermosillo, G., Taherkordi, A., Nzekwa1, R., Rouvoy, R., Eliassen, F.: The digihome service-oriented platform. Software - Practice and Experience (2011)Google Scholar
  3. 3.
    Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using architecture models for runtime adaptability. IEEE Software 23(2), 62–70 (2006)CrossRefGoogle Scholar
  4. 4.
    Chuang, S.N., Chan, A.T.: Dynamic qos adaptation for mobile middleware. IEEE Transaction on Software Engineering 34(6), 738–752 (2008)CrossRefGoogle Scholar
  5. 5.
    Kakousis, K., Paspallis, N., Papadopoulos, G.A.: A survey of software adaptation in mobile and ubiquitous computing. enterprise information systems. Enterprise Information Systems 4(4), 355–389 (2010)CrossRefGoogle Scholar
  6. 6.
    Zadeh, L.: Fuzzy logic= computing with words. IEEE Transactions on Fuzzy Systems 4(2), 103–111 (1996)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lee, C.: Fuzzy logic in control systems: fuzzy logic controller. i. IEEE Transactions on Systems, Man and Cybernetics 20(2), 404–418 (1990)CrossRefMATHGoogle Scholar
  8. 8.
    Tsang, D., Bensaou, B., Lam, S.: Fuzzy-based rate control for real-time mpeg video. IEEE Trans. Fuzzy Systems 6(4), 504–516 (1998)CrossRefGoogle Scholar
  9. 9.
    Pernici, B., Siadat, S.H.: A fuzzy service adaptation based on qoS satisfaction. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 48–61. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Yager, R.: On the construction of hierarchical fuzzy systems models. IEEE Transactions on Systems, Man, and Cybernetics 28(1), 55–66 (1998)CrossRefGoogle Scholar
  11. 11.
    Lee, M.L., Chung, H.Y., Yu, F.M.: Modeling of hierarchical fuzzy systems. Fuzzy Sets and Systems 138(2), 343–361 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Paspallis, N., Kakousis, K., Papadopoulos, G.: A multi-dimensional model enabling autonomic reasoning for context-aware pervasive applications. In: Proceedings of Mobiquitous 2008 (2008)Google Scholar
  13. 13.
    Bratskas, P., Paspallis, N., Kakousis, K., Papadopoulos, G.: Applying utility functions to adaptation planning for home automation applications. Information Systems Development, 529–537 (2010)Google Scholar
  14. 14.
    Geihs, K., Barone, P., Eliassen, F., Floch, J.: A comprehensive solution for application adaptation. Software Practice and Experience 39(4), 385–422 (2009)CrossRefGoogle Scholar
  15. 15.
    Huebscher, M., McCann, J.: A survey of autonomic computing degrees, models, and applications. ACM Comput. Surv 40(3), 1–28 (2008)CrossRefGoogle Scholar
  16. 16.
    Rouvoy, R., Barone, P., Ding, Y., Eliassen, F.: Music: Middleware support for self-adaptation in ubiquitous and service-oriented environments. Software Engineering for Self-adaptive Systems, 164–182 (2009)Google Scholar
  17. 17.
    Khan, M., Reichle, R., Wagner, M., Geihs, K., Scholz, U., Kakousis, C., Papadopoulos, G.: An adaptation reasoning approach for large scale component-based applications. Electronic Communications of the EASST 19 (2009)Google Scholar
  18. 18.
    Yang, Q., Yao, D., Garnett, J., Muller, K.: Using a trust inference model for flexible and controlled information sharing during crises. Journal of Contingencies and Crisis Management 18(4), 231–241 (2010)CrossRefGoogle Scholar
  19. 19.
    Mamdani, E.H.: Applications of fuzzy algorithm for control of simple dynamic plant. Proceeding of the IEEE 121, 1585–1588 (1974)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Mounir Beggas
    • 1
    • 4
  • Lionel Médini
    • 2
  • Frederique Laforest
    • 3
  • Mohamed Tayeb Laskri
    • 4
  1. 1.CNRS, INSA-Lyon - LIRIS UMR5205Université de LyonLyonFrance
  2. 2.LIRIS UMR5205 CNRSUniversité de LyonLyonFrance
  3. 3.LT2C, Telecom Saint EtienneUniversité de LyonLyonFrance
  4. 4.Department of Computer ScienceUniversity of AnnabaAnnabaAlgeria

Personalised recommendations