An Efficient Palmprint Identification System Using Multispectral and Hyperspectral Imaging

  • Abdallah Meraoumia
  • Salim Chitroub
  • Ahmed Bouridane
Part of the Studies in Computational Intelligence book series (SCI, volume 488)

Abstract

Ensuring the security of individuals is becoming an increasingly important problem in a variety of applications. Biometrics technology that relies on the physical and/or behavior human characteristics is capable of providing the necessary security over the standard forms of identification. Palmprint recognition is a relatively new one. Almost all the current palmprint-recognition systems are mainly based on image captured under visible light. However, multispectral and hyperspectral imaging have been recently used to improve the performance of palmprint identification. In this paper, the MultiSpectral Palmprint (MSP) and HyperSpectral Palmprint (HSP) are integrated in order to construct an efficient multimodal biometric system. The observation vector is based on Principal Components Analysis (PCA). Subsequently, HiddenMarkov Model (HMM) is used for modeling this vector. The proposed scheme is tested and evaluated using 350 users. Our experimental results show the effectiveness and reliability of the proposed system, which brings high identification accuracy rate.

Keywords

Biometrics Palmprint MSP HSP PCA HMM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wayman, J., Jain, A., Maltoni, D., Maio, D.: Biometric Systems, Technology, Design and Performance Evaluation. Springer, London (2005)Google Scholar
  2. 2.
    Yue, F., Zuo, W., Zhang, D., Li, B.: Fast palmprint identification with multiple templates per subject. Pattern Recognition Letters 32, 1108–1118 (2011)CrossRefGoogle Scholar
  3. 3.
    Zhang, D., Guo, Z., Lu, G., Zhang, L., Zuo, W.: An Online System of Multispectral Palmprint Verification. IEEE Transactions on Instrumentation and Measurement 59(2) (February 2010)Google Scholar
  4. 4.
    Guo, Z., Zhang, D., Zhang, L., Liu, W.: Feature Band Selection for Online Multispectral Palmprint Recognition. IEEE Transactions on Information Forensics and Security 7(3) (June 2012)Google Scholar
  5. 5.
    Zhang, D., Guo, Z., Lu, G., Zhang, L., Zuo, W.: An online system of multi-spectral palmprint verification. IEEE Trans. Instrumentation Measurement 59(3), 480–490 (2010)CrossRefGoogle Scholar
  6. 6.
    Zhang, D., Guo, Z., Lu, G., Zhang, L., Liu, Y., Zuo, W.: Online joint palmprint and palmvein verification. Expert Systems with Applications 38, 2621–2631 (2011)CrossRefGoogle Scholar
  7. 7.
    Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face recognition by independent component analysis. IEEE Transactions on Neural Networks 13(6), 1450–1464 (2002)CrossRefGoogle Scholar
  8. 8.
    Uguz, H., Arslan, A., Turkoglu, I.: A biomedical system based on hidden Markov model for diagnosis of the heart valve diseases. Pattern Recognition Letters 28, 395–404 (2007)CrossRefGoogle Scholar
  9. 9.
    Viterbi, A.J.: A Personal History of the Viterbi Algorithm. IEEE Signal Processing Magazine, 120–142 (2006)Google Scholar
  10. 10.
    Jain, A.K., Ross, A.: Learning User-Specific Parameters in a Multibiometric System. In: Proc. IEEE International Conference on Image Processing (ICIP), Rochester, NY, pp. 57–60 (2002)Google Scholar
  11. 11.
  12. 12.
    Uguz, H., Arslan, A., Turkoglu, I.: A biomedical system based on hidden Markov model for diagnosis of the heart valve diseases. Pattern Recognition Letters 28, 395–404Google Scholar
  13. 13.
    Dey, S., Samanta, D.: Iris Data Indexing Method Using Gabor Energy Features. IEEE Transactions on Information Forensics and Security 7(4), 1192–1203 (2012)CrossRefGoogle Scholar
  14. 14.
    Meraoumia, A., Chitroub, S., Ahmed, B.: Gaussian Modeling And Discrete Cosine Transform For Efficient And Automatic Palmprint Identification. In: IEEE International Conference on Machine and Web Intelligence-ICMWI, USTHB, Algiers, pp. 121–125 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Abdallah Meraoumia
    • 1
  • Salim Chitroub
    • 2
  • Ahmed Bouridane
    • 3
  1. 1.Université Kasdi Merbah Ouargla, Laboratoire de Génie ÉlectriqueFaculté des Sciences et de la Technologie et des Sciences de la MatiéreOuarglaAlgérie
  2. 2.Signal and Image Processing Laboratory, Electronics and Computer FacultyUSTHBAlgiersAlgeria
  3. 3.School of Computing, Engineering and Information SciencesNorthumbria UniversityNewcastle upon TyneUK

Personalised recommendations