Advertisement

Trajectory Optimization under Changing Conditions through Evolutionary Approach and Black-Box Models with Refining

  • Karel Macek
  • Jiří Rojíček
  • Vladimír Bičík
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 217)

Abstract

This article provides an algorithm that is dedicated to repeated trajectory optimization with a fixed horizon and addresses processes that are difficult to describe by the established laws of physics. Typically, soft-computing methods are used in such cases, i.e. black-box modeling and evolutionary optimization. Both suffer from high dimensions that make the problems complex or even computationally infeasible. We propose a way how to start from very simple problems and - after the simple problems are covered sufficiently - proceed to more complex ones. We provide also a case study related to the dynamic optimization of the HVAC (heating, ventilation, and air conditioning) systems.

Keywords

Empirical function minimization black-box modeling simplification refining dynamic building control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cleveland, W.: Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74(368), 829–836 (1979)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 312–317. IEEE (1996)Google Scholar
  3. 3.
    Henze, G., Kalz, D., Liu, S., Felsman, C.: Experimental analysis of model based predictive optimal control for active and passive building thermal storage inventory. HVAC&R Res. 11(1), 183–213 (2004)Google Scholar
  4. 4.
    Jolliffe, I.: Principal Component Analysis. Springer, New York (1986)CrossRefGoogle Scholar
  5. 5.
    Macek, K., Boštík, J., Kukal, J.: Reinforcement learning in global optimization heuristics. In: Mendel, 16th International Conference on Soft Computing, pp. 22–28 (2010)Google Scholar
  6. 6.
    Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimensionality. John Wiley & Sons, Hoboken (2007)CrossRefGoogle Scholar
  7. 7.
    Rojas, R.: Neural Networks - A Systematic Introduction. Springer, Berlin (1996)MATHGoogle Scholar
  8. 8.
    Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization. J. Global Optim. 11, 341–359 (1997)Google Scholar
  9. 9.
    Střelec, M., Macek, K., Abate, A.: Modeling and simulation of a microgrid as a stochastic hybrid system. In: Proceedings of the IEEE PES Innovative Smart Grid Technologies, ISGT 2012 (2012)Google Scholar
  10. 10.
    Tvrdík, J.: Adaptation in differential evolution: A numerical comparison. Appl. Soft Comput. 9(3), 1149–1155 (2009)CrossRefGoogle Scholar
  11. 11.
    Wasserman, L.: All of Nonparametric Statistics. Springer, New York (2006)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Karel Macek
    • 1
    • 2
  • Jiří Rojíček
    • 1
  • Vladimír Bičík
    • 1
  1. 1.Honeywell LaboratoriesPragueCzech Republic
  2. 2.Institute of Information Theory and AutomatizationAcademy of Scienced of the Czech RepublicPragueCzech Republic

Personalised recommendations