Skip to main content

Introduction

  • Chapter
  • 1349 Accesses

Part of the book series: Springer Monographs in Mathematics ((SMM))

Abstract

This introductory chapter gives an overview of the dimension theory and the multifractal analysis of dynamical systems, with emphasis on hyperbolic flows. Many of the results presented here are proved later on in the book. We also discuss topics that are not yet sufficiently well developed to include in the remaining chapters of a monograph of this nature. Finally, we include a discussion of open problems and suggestions for further developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L. Barreira, Dimension and Recurrence in Hyperbolic Dynamics, Progress in Mathematics 272, Birkhäuser, Basel, 2008.

    MATH  Google Scholar 

  2. L. Barreira, Thermodynamic Formalism and Applications to Dimension Theory, Progress in Mathematics 294, Birkhäuser, Basel, 2011.

    Book  MATH  Google Scholar 

  3. L. Barreira and P. Doutor, Birkhoff averages for hyperbolic flows: variational principles and applications, J. Stat. Phys. 115 (2004), 1567–1603.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Barreira and K. Gelfert, Multifractal analysis for Lyapunov exponents on nonconformal repellers, Commun. Math. Phys. 267 (2006), 393–418.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Barreira and G. Iommi, Suspension flows over countable Markov shifts, J. Stat. Phys. 124 (2006), 207–230.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Barreira and Ya. Pesin, Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and Its Applications 115, Cambridge University Press, Cambridge, 2007.

    Book  Google Scholar 

  7. L. Barreira, Ya. Pesin and J. Schmeling, Dimension and product structure of hyperbolic measures, Ann. Math. (2) 149 (1999), 755–783.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Barreira and B. Saussol, Multifractal analysis of hyperbolic flows, Commun. Math. Phys. 214 (2000), 339–371.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Barreira and B. Saussol, Variational principles for hyperbolic flows, Fields Inst. Commun. 31 (2002), 43–63.

    MathSciNet  Google Scholar 

  10. L. Barreira, B. Saussol and J. Schmeling, Higher-dimensional multifractal analysis, J. Math. Pures Appl. 81 (2002), 67–91.

    MathSciNet  MATH  Google Scholar 

  11. L. Barreira and J. Schmeling, Sets of “non-typical” points have full topological entropy and full Hausdorff dimension, Isr. J. Math. 116 (2000), 29–70.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Barreira and C. Wolf, Pointwise dimension and ergodic decompositions, Ergod. Theory Dyn. Syst. 26 (2006), 653–671.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Barreira and C. Wolf, Dimension and ergodic decompositions for hyperbolic flows, Discrete Contin. Dyn. Syst. 17 (2007), 201–212.

    MathSciNet  MATH  Google Scholar 

  14. T. Bedford, Crinkly curves, Markov partitions and box dimension of self-similar sets, Ph.D. Thesis, University of Warwick, 1984.

    Google Scholar 

  15. T. Bedford, The box dimension of self-affine graphs and repellers, Nonlinearity 2 (1989), 53–71.

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Bedford and M. Urbański, The box and Hausdorff dimension of self-affine sets, Ergod. Theory Dyn. Syst. 10 (1990), 627–644.

    Article  MATH  Google Scholar 

  17. C. Bonatti, L. Díaz and M. Viana, Discontinuity of the Hausdorff dimension of hyperbolic sets, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 713–718.

    MATH  Google Scholar 

  18. H. Bothe, The Hausdorff dimension of certain solenoids, Ergod. Theory Dyn. Syst. 15 (1995), 449–474.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Bowen, Symbolic dynamics for hyperbolic flows, Am. J. Math. 95 (1973), 429–460.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Bowen, Hausdorff dimension of quasi-circles, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 259–273.

    Google Scholar 

  21. M. Brin and A. Katok, On local entropy, in Geometric Dynamics (Rio de Janeiro, 1981), edited by J. Palis, Lect. Notes in Math. 1007, Springer, Berlin, 1983, pp. 30–38.

    Chapter  Google Scholar 

  22. P. Collet, J. Lebowitz and A. Porzio, The dimension spectrum of some dynamical systems, J. Stat. Phys. 47 (1987), 609–644.

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Díaz and M. Viana, Discontinuity of Hausdorff dimension and limit capacity on arcs of diffeomorphisms, Ergod. Theory Dyn. Syst. 9 (1989), 403–425.

    Article  MATH  Google Scholar 

  24. A. Douady and J. Oesterlé, Dimension de Hausdorff des attracteurs, C. R. Acad. Sci. Paris 290 (1980), 1135–1138.

    MATH  Google Scholar 

  25. M. Dysman, Fractal dimension for repellers of maps with holes, J. Stat. Phys. 120 (2005), 479–509.

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Falconer, The Hausdorff dimension of self-affine fractals, Math. Proc. Camb. Philos. Soc. 103 (1988), 339–350.

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Falconer, A subadditive thermodynamic formalism for mixing repellers, J. Phys. A, Math. Gen. 21 (1988), 1737–1742.

    Google Scholar 

  28. K. Falconer, Dimensions and measures of quasi self-similar sets, Proc. Am. Math. Soc. 106 (1989), 543–554.

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Falconer, Bounded distortion and dimension for non-conformal repellers, Math. Proc. Camb. Philos. Soc. 115 (1994), 315–334.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Fan, Y. Jiang and J. Wu, Asymptotic Hausdorff dimensions of Cantor sets associated with an asymptotically non-hyperbolic family, Ergod. Theory Dyn. Syst. 25 (2005), 1799–1808.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Feng, Lyapunov exponents for products of matrices and multifractal analysis. I. Positive matrices, Isr. J. Math. 138 (2003), 353–376.

    Article  MATH  Google Scholar 

  32. D. Feng, The variational principle for products of non-negative matrices, Nonlinearity 17 (2004), 447–457.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Feng and K. Lau, The pressure function for products of non-negative matrices, Math. Res. Lett. 9 (2002), 363–378.

    MathSciNet  MATH  Google Scholar 

  34. D. Gatzouras and S. Lalley, Hausdorff and box dimensions of certain self-affine fractals, Indiana Univ. Math. J. 41 (1992), 533–568.

    Article  MathSciNet  MATH  Google Scholar 

  35. D. Gatzouras and Y. Peres, Invariant measures of full dimension for some expanding maps, Ergod. Theory Dyn. Syst. 17 (1997), 147–167.

    Article  MathSciNet  MATH  Google Scholar 

  36. K. Gelfert, Dimension estimates beyond conformal and hyperbolic dynamics, Dyn. Syst. 20 (2005), 267–280.

    Article  MathSciNet  MATH  Google Scholar 

  37. B. Gurevič, Topological entropy of a countable Markov chain, Sov. Math. Dokl. 10 (1969), 911–915.

    Google Scholar 

  38. T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia and B. Shraiman, Fractal measures and their singularities: the characterization of strange sets, Phys. Rev. A 34 (1986), 1141–1151; errata in 34 (1986), 1601.

    Article  Google Scholar 

  39. P. Hanus, R. Mauldin and M. Urbański, Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems, Acta Math. Hung. 96 (2002), 27–98.

    Article  MATH  Google Scholar 

  40. B. Hasselblatt and J. Schmeling, Dimension product structure of hyperbolic sets, Electron. Res. Announc. Am. Math. Soc. 10 (2004), 88–96.

    Article  MathSciNet  MATH  Google Scholar 

  41. B. Hasselblatt and J. Schmeling, Dimension product structure of hyperbolic sets, in Modern Dynamical Systems and Applications, Cambridge University Press, Cambridge, 2004, pp. 331–345.

    Google Scholar 

  42. M. Hirayama, An upper estimate of the Hausdorff dimension of stable sets, Ergod. Theory Dyn. Syst. 24 (2004), 1109–1125.

    Article  MathSciNet  MATH  Google Scholar 

  43. V. Horita and M. Viana, Hausdorff dimension of non-hyperbolic repellers. I. Maps with holes, J. Stat. Phys. 105 (2001), 835–862.

    Article  MathSciNet  MATH  Google Scholar 

  44. V. Horita and M. Viana, Hausdorff dimension for non-hyperbolic repellers. II. DA diffeomorphisms, Discrete Contin. Dyn. Syst. 13 (2005), 1125–1152.

    Article  MathSciNet  MATH  Google Scholar 

  45. H. Hu, Box dimensions and topological pressure for some expanding maps, Commun. Math. Phys. 191 (1998), 397–407.

    Article  MATH  Google Scholar 

  46. G. Iommi, Multifractal analysis for countable Markov shifts, Ergod. Theory Dyn. Syst. 25 (2005), 1881–1907.

    Article  MathSciNet  MATH  Google Scholar 

  47. T. Jordan and K. Simon, Multifractal analysis of Birkhoff averages for some self-affine IFS, Dyn. Syst. 22 (2007), 469–483.

    Article  MathSciNet  MATH  Google Scholar 

  48. G. Keller, Equilibrium States in Ergodic Theory, London Mathematical Society Student Texts 42, Cambridge University Press, Cambridge, 1998.

    Book  MATH  Google Scholar 

  49. R. Kenyon and Y. Peres, Measures of full dimension on affine-invariant sets, Ergod. Theory Dyn. Syst. 16 (1996), 307–323.

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Kesseböhmer and B. Stratmann, A multifractal formalism for growth rates and applications to geometrically finite Kleinian groups, Ergod. Theory Dyn. Syst. 24 (2004), 141–170.

    Article  MATH  Google Scholar 

  51. M. Kesseböhmer and B. Stratmann, A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates, J. Reine Angew. Math. 605 (2007), 133–163.

    MathSciNet  MATH  Google Scholar 

  52. F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms I. Characterization of measures satisfying Pesin’s entropy formula, Ann. Math. (2) 122 (1985), 509–539.

    Article  MathSciNet  MATH  Google Scholar 

  53. F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms II. Relations between entropy, exponents and dimension, Ann. Math. (2) 122 (1985), 540–574.

    Article  MathSciNet  Google Scholar 

  54. A. Lopes, The dimension spectrum of the maximal measure, SIAM J. Math. Anal. 20 (1989), 1243–1254.

    Article  MathSciNet  MATH  Google Scholar 

  55. N. Luzia, A variational principle for the dimension for a class of non-conformal repellers, Ergod. Theory Dyn. Syst. 26 (2006), 821–845.

    Article  MathSciNet  MATH  Google Scholar 

  56. N. Luzia, Measure of full dimension for some nonconformal repellers, Discrete Contin. Dyn. Syst. 26 (2010), 291–302.

    Article  MathSciNet  MATH  Google Scholar 

  57. R. Mañé, The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces, Bol. Soc. Bras. Mat. (N.S.) 20 (1990), 1–24.

    Article  MATH  Google Scholar 

  58. R. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. Lond. Math. Soc. (3) 73 (1996), 105–154.

    Article  MATH  Google Scholar 

  59. R. Mauldin and M. Urbański, Conformal iterated function systems with applications to the geometry of continued fractions, Trans. Am. Math. Soc. 351 (1999), 4995–5025.

    Article  MATH  Google Scholar 

  60. R. Mauldin and M. Urbański, Parabolic iterated function systems, Ergod. Theory Dyn. Syst. 20 (2000), 1423–1447.

    Article  MATH  Google Scholar 

  61. H. McCluskey and A. Manning, Hausdorff dimension for horseshoes, Ergod. Theory Dyn. Syst. 3 (1983), 251–260.

    Article  MathSciNet  Google Scholar 

  62. C. McMullen, The Hausdorff dimension of general Sierpiński carpets, Nagoya Math. J. 96 (1984), 1–9.

    MathSciNet  MATH  Google Scholar 

  63. K. Nakaishi, Multifractal formalism for some parabolic maps, Ergod. Theory Dyn. Syst. 20 (2000), 843–857.

    Article  MathSciNet  MATH  Google Scholar 

  64. J. Palis and M. Viana, On the continuity of Hausdorff dimension and limit capacity for horseshoes, in Dynamical Systems (Valparaiso, 1986), edited by R. Bamón, R. Labarca and J. Palis, Lecture Notes in Mathematics 1331, Springer, Berlin, 1988, pp. 150–160.

    Google Scholar 

  65. Ya. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Chicago Lectures in Mathematics, Chicago University Press, Chicago, 1997.

    Book  Google Scholar 

  66. Ya. Pesin and V. Sadovskaya, Multifractal analysis of conformal axiom A flows, Commun. Math. Phys. 216 (2001), 277–312.

    Article  MathSciNet  MATH  Google Scholar 

  67. Ya. Pesin and H. Weiss, A multifractal analysis of equilibrium measures for conformal expanding maps and Markov Moran geometric constructions, J. Stat. Phys. 86 (1997), 233–275.

    Article  MathSciNet  MATH  Google Scholar 

  68. Ya. Pesin and H. Weiss, The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples, Chaos 7 (1997), 89–106.

    Article  MathSciNet  MATH  Google Scholar 

  69. M. Piacquadio and M. Rosen, Multifractal spectrum of an experimental (video feedback) Farey tree, J. Stat. Phys. 127 (2007), 783–804.

    Article  MathSciNet  MATH  Google Scholar 

  70. M. Pollicott and H. Weiss, The dimensions of some self-affine limit sets in the plane and hyperbolic sets, J. Stat. Phys. 77 (1994), 841–866.

    Article  MathSciNet  MATH  Google Scholar 

  71. M. Pollicott and H. Weiss, Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation, Commun. Math. Phys. 207 (1999), 145–171.

    Article  MathSciNet  MATH  Google Scholar 

  72. F. Przytycki and M. Urbański, On the Hausdorff dimension of some fractal sets, Stud. Math. 93 (1989), 155–186.

    MATH  Google Scholar 

  73. D. Rand, The singularity spectrum f(α) for cookie-cutters, Ergod. Theory Dyn. Syst. 9 (1989), 527–541.

    Article  MathSciNet  MATH  Google Scholar 

  74. M. Ratner, Markov partitions for Anosov flows on n-dimensional manifolds, Isr. J. Math. 15 (1973), 92–114.

    Article  MathSciNet  MATH  Google Scholar 

  75. D. Ruelle, Statistical mechanics on a compact set with \(\mathbb{Z}^{\nu}\) action satisfying expansiveness and specification, Trans. Am. Math. Soc. 185 (1973), 237–251.

    Article  MathSciNet  Google Scholar 

  76. D. Ruelle, Thermodynamic Formalism, Encyclopedia of Mathematics and Its Applications 5, Addison-Wesley, Reading, 1978.

    MATH  Google Scholar 

  77. D. Ruelle, Repellers for real analytic maps, Ergod. Theory Dyn. Syst. 2 (1982), 99–107.

    Article  MathSciNet  MATH  Google Scholar 

  78. O. Sarig, Thermodynamic formalism for countable Markov shifts, Ergod. Theory Dyn. Syst. 19 (1999), 1565–1593.

    Article  MathSciNet  MATH  Google Scholar 

  79. S. Savchenko, Special flows constructed from countable topological Markov chains, Funct. Anal. Appl. 32 (1998), 32–41.

    Article  MathSciNet  MATH  Google Scholar 

  80. J. Schmeling, Symbolic dynamics for β-shifts and self-normal numbers, Ergod. Theory Dyn. Syst. 17 (1997), 675–694.

    Article  MathSciNet  MATH  Google Scholar 

  81. K. Simon, Hausdorff dimension for noninvertible maps, Ergod. Theory Dyn. Syst. 13 (1993), 199–212.

    Article  MATH  Google Scholar 

  82. K. Simon, The Hausdorff dimension of the Smale–Williams solenoid with different contraction coefficients, Proc. Am. Math. Soc. 125 (1997), 1221–1228.

    Article  MATH  Google Scholar 

  83. K. Simon and B. Solomyak, Hausdorff dimension for horseshoes in \(\mathbb{R}^{3}\), Ergod. Theory Dyn. Syst. 19 (1999), 1343–1363.

    Article  MathSciNet  MATH  Google Scholar 

  84. B. Solomyak, Measure and dimension for some fractal families, Math. Proc. Camb. Philos. Soc. 124 (1998), 531–546.

    Article  MathSciNet  MATH  Google Scholar 

  85. F. Takens, Limit capacity and Hausdorff dimension of dynamically defined Cantor sets, in Dynamical Systems (Valparaiso 1986), edited by R. Bamón, R. Labarca and J. Palis, Lecture Notes in Mathematics 1331, Springer, Berlin, 1988, 196–212.

    Google Scholar 

  86. M. Urbański and C. Wolf, Ergodic theory of parabolic horseshoes, Commun. Math. Phys. 281 (2008), 711–751.

    Article  MATH  Google Scholar 

  87. P. Walters, Equilibrium states for β-transformations and related transformations, Math. Z. 159 (1978), 65–88.

    Article  MathSciNet  Google Scholar 

  88. Y. Yayama, Dimensions of compact invariant sets of some expanding maps, Ergod. Theory Dyn. Syst. 29 (2009), 281–315.

    Article  MathSciNet  MATH  Google Scholar 

  89. L.-S. Young, Dimension, entropy and Lyapunov exponents, Ergod. Theory Dyn. Syst. 2 (1982), 109–124.

    Article  MATH  Google Scholar 

  90. M. Yuri, Multifractal analysis of weak Gibbs measures for intermittent systems, Commun. Math. Phys. 230 (2002), 365–388.

    Article  MathSciNet  MATH  Google Scholar 

  91. Y. Zhang, Dynamical upper bounds for Hausdorff dimension of invariant sets, Ergod. Theory Dyn. Syst. 17 (1997), 739–756.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barreira, L. (2013). Introduction. In: Dimension Theory of Hyperbolic Flows. Springer Monographs in Mathematics. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00548-5_1

Download citation

Publish with us

Policies and ethics