Advertisement

Do Evolutionary Algorithms Indeed Require Random Numbers? Extended Study

  • Ivan ZelinkaEmail author
  • Mohammed Chadli
  • Donald Davendra
  • Roman Senkerik
  • Michal Pluhacek
  • Jouni Lampinen
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 210)

Abstract

An inherent part of evolutionary algorithms, that are based on Darwin theory of evolution and Mendel theory of genetic heritage, are random processes. In this participation, we discuss whether are random processes really needed in evolutionary algorithms. We use \(\mathcal{n}\) periodic deterministic processes instead of random number generators and compare performance of evolutionary algorithms powered by those processes and by pseudo-random number generators. Deterministic processes used in this participation are based on deterministic chaos and are used to generate periodical series with different length. Results presented here are numerical demonstration rather than mathematical proofs. We propose that a certain class of deterministic processes can be used instead of random number generators without lowering of evolutionary algorithms performance.

Keywords

Particle Swarm Optimization Evolutionary Algorithm Chaotic System Random Number Generator Algorithm Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zelinka, I., Celikovsky, S., Richter, H., Chen, G.: Evolutionary Algorithms and Chaotic Systems, p. 550. Springer, Germany (2010)zbMATHCrossRefGoogle Scholar
  2. 2.
    Lozi, R.: Emergence Of Randomness From Chaos. International Journal of Bifurcation and Chaos 22(2), 1250021 (2012), doi:10.1142/S0218127412500216MathSciNetCrossRefGoogle Scholar
  3. 3.
    Wang, X.-Y., Qin, X.: A new pseudo-random number generator based on CML and chaotic iteration. Nonlinear Dynamics An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems 70(2), 1589–1592 (2012) ISSN 0924-090X, doi:10.1007/s11071-012-0558-0MathSciNetGoogle Scholar
  4. 4.
    Pareek, N.K., Patidar, V., Sud, K.K.: A Random Bit Generator Using Chaotic Maps. International Journal of Network Security 10(1), 32–38 (2010)Google Scholar
  5. 5.
    Wang, X.-Y., Lei, Y.: Design Of Pseudo-Random Bit Generator Based On Chaotic Maps. International Journal of Modern Physics B 26(32), 1250208 (9 pages) (2012), doi:10.1142/S0217979212502086MathSciNetCrossRefGoogle Scholar
  6. 6.
    Zhang, S.Y., Xingsheng, L.G.: A hybrid co-evolutionary cultural algorithm based on particle swarm optimization for solving global optimization problems. In: International Conference on Life System Modeling and Simulation / International Conference on Intelligent Computing for Sustainable Energy and Environment (LSMS-ICSEE), Wuxi, Peoples R China, September 17-20 (2010)Google Scholar
  7. 7.
    Hong, W.-C., Dong, Y., Zhang, Wen, Y., Chen, L.-Y., B.K., P.: Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm. International Journal of Electrical Power and Energy Systems 44(1), 604–614, doi:10.1016/j.ijepes.2012.08.010Google Scholar
  8. 8.
    Zelinka, I.: SOMA – Self Organizing Migrating Algorithm. In: Babu, B.V., Onwubolu, G. (eds.) New Optimization Techniques in Engineering, pp. 167–218. Springer, New YorkGoogle Scholar
  9. 9.
    Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, LondonGoogle Scholar
  10. 10.
    Glover, F., Laguna, M.: Scatter Search. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computation: Theory and Applications, pp. 519–537. Springer, New York (2003)Google Scholar
  11. 11.
    Beyer, H.-G.: Theory of Evolution Strategies. Springer, New York (2001)Google Scholar
  12. 12.
    Holland, J.H.: Genetic Algorithms. Scientific American, 44–50 (July 1992)Google Scholar
  13. 13.
    Clerc, M.: Particle Swarm Optimization. ISTE Publishing Company (2006) ISBN 1905209045Google Scholar
  14. 14.
    Pluhacek, M., Senkerik, R., Zelinka, I.: Impact of various chaotic maps on the performance of chaos enhanced PSO algorithm with inertia weight – an initial study. In: Zelinka, I., Snasel, V., Rössler, O.E., Abraham, A., Corchado, E.S. (eds.) Nostradamus: Mod. Meth. of Prediction, Modeling. AISC, vol. 192, pp. 153–166. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Pluhacek, M., Senkerik, R., Davendra, D., Zelinka, I.: Designing PID controller for DC motor by means of enhanced PSO algorithm with dissipative chaotic map. In: Snasel, V., Abraham, A., Corchado, E.S. (eds.) SOCO Models in Industrial & Environmental Appl. AISC, vol. 188, pp. 475–483. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Yang, M., Guan, J., Cai, Z., Wang, L.: Self-adapting differential evolution algorithm with chaos random for global numerical optimization. In: Cai, Z., Hu, C., Kang, Z., Liu, Y. (eds.) ISICA 2010. LNCS, vol. 6382, pp. 112–122. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Coelho, L., Mariani, V.: Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect. IEEE Transactions On Power Systems 21(2), 989–996 (2006), doi:10.1109/TPWRS.2006.873410CrossRefGoogle Scholar
  18. 18.
    Hu, G.-W.: Chaos-differential evolution for multiple sequence alignment. In: 3rd International Symposium on Intelligent Information Technology Application, Nanchang, Peoples R China, vol. 2, pp. 556–558., doi:10.1109/IITA.2009.511Google Scholar
  19. 19.
    Zhao, Q., Ren, J., Zhang, Z., Duan, F.: Immune co-evolution algorithm based on chaotic optimization. In: Workshop on Intelligent Information Technology Application (IITA 2007), Zhang Jiajie, Peoples R China, pp. 149–152 (2007)Google Scholar
  20. 20.
    Peng, C., Sun, H., Guo, J., Liu, G.: Dynamic economic dispatch for wind-thermal power system using a novel bi-population chaotic differential evolution algorithm. International Journal of Electrical Power & Energy Systems 42(1), 119–126 (2012), doi:10.1016/j.ijepes.2012.03.012CrossRefGoogle Scholar
  21. 21.
    Zhang, H., Zhou, J., Zhang, Y., Fang, N., Zhang, R.: Short term hydrothermal scheduling using multi-objective differential evolution with three chaotic sequences. International Journal of Electrical Power & Energy Systems 47, 85–99 (2013), doi:10.1016/j.ijepes.2012.10.014CrossRefGoogle Scholar
  22. 22.
    Zou, X., Wang, M., Zhou, A., McKay, B.: Evolutionary optimization based on chaotic sequence in dynamic environments. In: 2004 IEEE International Conference on Networking, Sensing and Contro, vol. 2, pp. 1364–1369 (2004)Google Scholar
  23. 23.
    Liua, B., Wanga, L., Jina, Y.-H., Tangb, F., Huanga, D.-X.: Improved particle swarm optimization combined with chaos. Chaos, Solitons & Fractals 25(5), 1261–1271 (2005)CrossRefGoogle Scholar
  24. 24.
    Song, Y.: A bi-directional chaos optimization algorithm. In: 2010 Sixth International Conference on Natural Computation (ICNC), August 10-12, vol. 5, pp. 2202–2206 (2010)Google Scholar
  25. 25.
    Gandomi, A., Yun, G., Yang, X., Talatahari, S.: Chaos-enhanced accelerated particle swarm optimization. Communications In Nonlinear Science and Numerical Simulation 18(2), 327–340 (2013), doi:10.1016/j.cnsns.2012.07.017MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Matousek, R.: HC12: The Principle of CUDA Implementation. In: Matousek (ed.) 16th International Conference on Soft Computing, MENDEL 2010, Brno, pp. 303–308 (2010)Google Scholar
  27. 27.
    Matousek, R., Zampachova, E.: Promising GAHC and HC12 algorithms in global optimization tasks. Journal Optimization Methods & Software 26(3), 405–419 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Matousek, R.: GAHC: Improved Genetic Algorithm. In: Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2007). SCI, vol. 129, pp. 507–520. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Zelinka, I., Davendra, D., Senkerik, R., Jasek, R., Oplatkova, Z.: Analytical Programming - a Novel Approach for Evolutionary Synthesis of Symbolic Structures. In: Kita, E. (ed.) Evolutionary Algorithms. InTech (2011) ISBN: 978-953-307-171-8, doi:10.5772/16166, http://www.intechopen.com/books/evolutionary-algorithms/analytical-programming-a-novel-approach-for-evolutionary-synthesis-of-symbolic-structures

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Ivan Zelinka
    • 1
    Email author
  • Mohammed Chadli
    • 3
  • Donald Davendra
    • 1
  • Roman Senkerik
    • 2
  • Michal Pluhacek
    • 2
  • Jouni Lampinen
    • 4
  1. 1.VSB-Technical University of OstravaOstrava-PorubaCzech Republic
  2. 2.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  3. 3.Laboratory of Modeling, Information and Systems (MIS)University of Picardie Jules Verne (UPJV)Amiens Cedex 1France
  4. 4.Department of Computer ScienceUniversity of VaasaVaasaFinland

Personalised recommendations