Utilising the Chaos-Induced Discrete Self Organising Migrating Algorithm to Schedule the Lot-Streaming Flowshop Scheduling Problem with Setup Time

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 210)


The dissipative Lozi chaotic map is embedded in the Discrete Self Organising Migrating (DSOMA) algorithm, as a pseudorandom generator. This novel chaotic based algorithm is applied to the constraint based Lot-Streaming Flowshop scheduling problem. Two new and unique data sets generated using the Lozi and Dissipative maps are used to compare the chaos embedded DSOMA (DSOMAc) and the generic DSOMA utilising the venerableMersenne Twister. In total, 100 data sets were tested by the two algorithms, for the idling and the non-idling case. From the obtained results, the DSOMA c algorithm is shown to significantly improve the performance of generic DSOMA.


Local Search Completion Time Differential Evolution Setup Time Chaotic Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alatas, B., Akin, E., Ozer, A.: Chaos embedded particle swarm optimization algorithms. Chaos, Solitons and Fractals 40(4), 1715–1734 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(3), 289–304 (2003)CrossRefGoogle Scholar
  3. 3.
    Chang, J.L., Gong, D.W., Ma, X.P.: A heuristic genetic algorithm for no-wait flowshop scheduling problem. Journal of China University of Mining and Technology 17(4), 582–586 (2007)CrossRefGoogle Scholar
  4. 4.
    Davendra, D.: Chaotic attributes and permutative optimization. Ph.D. thesis, Tomas Bata University in Zlin (2009)Google Scholar
  5. 5.
    Davendra, D.: Flowshop lot-streaming problem data sets (2012),
  6. 6.
    Davendra, D., Bialic-Davendra, M.: Scheduling flow shops with blocking using a discrete self-organising migrating algorithm. International Journal of Production Research 51(8), 2200–2218 (2013), doi:10.1080/00207543.2012.711968CrossRefGoogle Scholar
  7. 7.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithm for the traveling salesman problem. In: Davendra, D. (ed.) Traveling Salesman Problem, Theory and Applications, pp. 55–70. InTech Publishing, Croatia (2010)CrossRefGoogle Scholar
  8. 8.
    Davendra, D., Zelinka, I., Bialic-Davendra, M., Senkerik, R., Jasek, R.: Discrete self-organising migrating algorithm for flow-shop scheduling with no-wait makespan. Mathematical and Computer Modelling 57(12), 100–110 (2013), doi:10.1016/j.mcm.2011.05.029MathSciNetCrossRefGoogle Scholar
  9. 9.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of pid control. Computers & Mathematics with Applications 60(4), 1088–1104 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Hilborn, R.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. OUP Oxford (2000)Google Scholar
  11. 11.
    Lu, Y., Zhou, J., Qin, H., Wang, Y., Zhang, Y.: Chaotic differential evolution methods for dynamic economic dispatch with valve-point effects. Engineering Applications of Artificial Intelligence 24(2), 378–387 (2011)CrossRefGoogle Scholar
  12. 12.
    Matsumoto, M.: Mersenne twister webpage (2012),
  13. 13.
    Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Transaction on Modeling and Computer Simulation 8(1), 3–30 (1998)zbMATHCrossRefGoogle Scholar
  14. 14.
    Ozer, A.: Cide: Chaotically initialized differential evolution. Expert Systems with Applications 37(6), 4632–4641 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pan, Q.K., Fatih Tasgetiren, M., Suganthan, P.N., Chua, T.J.: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Inf. Sci. 181(12), 2455–2468 (2011), doi:10.1016/j.ins.2009.12.025CrossRefGoogle Scholar
  16. 16.
    Pan, Q.K., Ruiz, R.: An estimation of distribution algorithm for lot-streaming flow shop problems with setup times. Omega 40(2), 166–180 (2012)CrossRefGoogle Scholar
  17. 17.
    Potts, C.N., Baker, K.R.: Flow shop scheduling with lot streaming. Oper. Res. Lett. 8(6), 297–303 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Sarin, S.C., Jaiprakash, P.: Flow Shop Lot Streaming. Springer, Berlin (2007)zbMATHCrossRefGoogle Scholar
  19. 19.
    Yavuz, M.: Fuzzy lead time management. In: Kahraman, C., Yavuz, M. (eds.) Production Engineering and Management under Fuzziness. STUDFUZZ, vol. 252, pp. 77–94. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Yuan, X., Cao, B., Yang, B., Yuan, Y.: Hydrothermal scheduling using chaotic hybrid differential evolution. Energy Conversion and Management 49(12), 3627–3633 (2008)CrossRefGoogle Scholar
  21. 21.
    Zelinka, I.: Soma - self organizing migrating algorithm. In: Onwubolu, G., Babu, B. (eds.) New Optimization Techniques in Engineering. Springer, Germany (2004)Google Scholar
  22. 22.
    Zuo, X., Fan, Y.: A chaos search immune algorithm with its application to neuro-fuzzy controller design. Chaos, Solitons and Fractals 30(1), 94–109 (2006)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.VSB-Technical University of OstravaOstrava-PorubaCzech Republic
  2. 2.Roman Senkerik Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  3. 3.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  4. 4.Centre for Applied Economic ResearchTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations