Advertisement

The Effect of Sub-sampling on Hyperspectral Dimension Reduction

  • Ali Ömer Kozal
  • Mustafa Teke
  • Hakkı Alparslan Ilgın
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 210)

Abstract

Hyperspectral images which are captured in narrow bands in continuous manner contain very large data. This data need high processing power to classify and may contain redundant information. A variety of dimension reduction methods are used to cope with this high dimensionality. In this paper, the effect of sub-sampling hyperspectral images for dimension reduction techniques is explored and compared in classification performance and calculation time.

Keywords

Hyperspectral imaging dimension reduction remote sensing hyperspectral image classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fodor, I.K.: A Survey of Dimension Reduction Techniques. UCRL-ID-148494 (May 9, 2002)Google Scholar
  2. 2.
    AVIRIS NW Indiana’s Indian Pines 1992 data set. (data), ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C.tif.zip (ground truth), ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/ThyFiles.zip (access Date: May 07, 2012)
  3. 3.
    Rodarmel, C., Shan, J.: Principal component analysis for hyperspectral. image classification. Surv. Land Inf. Sci. 62(2), 115–122Google Scholar
  4. 4.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  5. 5.
    He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems, vol. 16, p. 37. The MIT Press, Cambridge (2004)Google Scholar
  6. 6.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  7. 7.
    He, X., Cai, D., Yan, S., Zhang, H.-J.: Neighborhood preserving embedding. In: Proc. ICCV (2005)Google Scholar
  8. 8.
    Jacob, G., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood components analysis. In: Advances in Neural Information Processing Systems 17 (2004)Google Scholar
  9. 9.
    Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Rosipal, R., Girolami, M.: An expectation-maximization approach to nonlinear component analysis. Neural Comput. 13(3), 505–510 (2001)MATHCrossRefGoogle Scholar
  11. 11.
    Bishop, T.: Probabilistic principal component analysis. T.Journal of the Royal Statistical Society, Series B, 61, Part 3, 611–622 (1999)Google Scholar
  12. 12.
    Globerson, A., Roweis, S.: Metric Learning by Collapsing Classes. In: NIPS (2005)Google Scholar
  13. 13.
    Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by semidefinite programming. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2004), Washington DC, vol. 2, pp. 988–995 (2004)Google Scholar
  14. 14.
    van der Maaten, L.J.P.: An introduction to dimensionality reduction using Matlab. Technical Report 07-06, MICC-IKAT, Maastricht University, Maastricht, The Netherlands (2007)Google Scholar
  15. 15.
    Brand, M.: Charting a manifold. In: Advances in Neural Information Processing Systems, vol. 15, pp. 985–992. The MIT Press, Cambridge (2002)Google Scholar
  16. 16.
    Parasad, S., Bruce, L., Chanussot, J.: Optical Remote Sensing: Advances in Signal Processing and Exploitation Techniques (Augmented Vision and Reality) ISBN-10: 3642142117Google Scholar
  17. 17.
    van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J.: Dimensionality Reduction: A Comparative Review, Tilburg University Technical Report, TiCC-TR 2009-005 (2009)Google Scholar
  18. 18.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press Professional, Inc., San Diego (1990)MATHGoogle Scholar
  19. 19.
    Levina, E., Bickel, P.J.: Maximum likelihood estimation of intrinsic dimension. In: Advances in Neural Information Processing Systems, vol. 17. The MIT Press, Cambridge (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Ali Ömer Kozal
    • 1
    • 2
  • Mustafa Teke
    • 1
  • Hakkı Alparslan Ilgın
    • 2
  1. 1.TÜBİTAK UZAY (The Scientific And Technological Research Council Of Turkey, Space Technologies Research Institute)ODTÜ YerleşkesiAnkaraTurkey
  2. 2.Electrical and Electronics Eng. Dept.Ankara UniversityAnkaraTurkey

Personalised recommendations