Engineering of Mathematical Chaotic Circuits

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 210)

Abstract

We introduce the paradigm of chaotic mathematical circuitry which shows some similarity to the paradigm of electronic circuitry especially in the frame of chaotic attractors for application purpose (cryptography, generic algorithms in optimization, control, …).

Keywords

Chaos dynamics inside soft computing algorithms Mathematical chaotic circuits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cherrier, E., Lozi, R.: Noise-resisting ciphering based on a chaotic multi-stream pseudo-random number generator. In: Proc. IEEE Conference Internet Technology and Secured Transactions (ICITST), Abu Dhabi, December 11-14, pp. 91–96 (2011)Google Scholar
  2. 2.
    Chua, L.O., Kumoro, M., Matsumoto, T.: The Double Scroll Family. IEEE Trans. Circuit and Systems 32(11), 1055–1058 (1984)Google Scholar
  3. 3.
    Espinel, A., Taralova, I., Lozi, R.: Dynamical and Statistical Analysis of a New Lozi Function for Random Numbers Generation. In: Proceeding of Physcon 2011, León, Spain, September 5-8. IPACS open Access Electronic Library and Applications (2011)Google Scholar
  4. 4.
    Hénon, M.: A Two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976)MATHCrossRefGoogle Scholar
  5. 5.
    Kapitaniak, T., Chua, L.O., Zhong, G.-H.: Experimental hyperchaos in coupled Chua’s circuits. IEEE Trans. Circuit and Systems 41(7), 499–503 (1994)CrossRefGoogle Scholar
  6. 6.
    Lozi, R., Chua, L.O.: Secure communications via chaotic synchronization II: noise reduction by cascading two identical receivers. Int. J. Bifurcation & Chaos 3(5), 1319–1325 (1993)MATHCrossRefGoogle Scholar
  7. 7.
    Lozi, R.: Giga-periodic orbits for weakly coupled tent and logistic discretized maps. In: Siddiqi, A.H., Duff, I.S., Christensen, O. (eds.) Modern Mathematical Models, Methods and Algorithms for Real World Systems, pp. 80–124. Anamaya Publishers, New Delhi (2006)Google Scholar
  8. 8.
    Lozi, R.: New Enhanced Chaotic Number Generators. Indian Journal of Industrial and Applied Mathematics 1(1), 1–23 (2008)MathSciNetGoogle Scholar
  9. 9.
    Lozi, R.: Complexity leads to randomness in chaotic systems. In: Siddiqi, A.H., Singh, R.C., Manchanda, P. (eds.) Mathematics in Science and Technology: Mathematical Methods, Models and Algorithms in Science and Technology. Proceedings of the Satellite Conference of ICM, Delhi, India, August 15-17, pp. 93–125. World Scientific Publisher, Singapore (2010)Google Scholar
  10. 10.
    Lozi, R.: Emergence of randomness from chaos. Int. J. Bifurcation & Chaos 22(2), 1250021, 15pages (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Pluhacek, M., Senkerik, R., Davendra, D., Zelinka, I.: Designing PID Controller for DC Motor by Means of Enhanced PSO Algorithm with Dissipative Chaotic Map. In: Snasel, V., Abraham, A., Corchado, E.S. (eds.) SOCO Models in Industrial & Environmental Appl. AISC, vol. 188, pp. 475–483. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Laboratoire J.A. Dieudonné, UMR CNRS 7351Université de Nice-Sophia AntipolisNice Cedex 02France

Personalised recommendations