Abstract

The goal of this paper is to analyze the Czech Gross domestic product (GDP) and to find chaos in the Czech GDP. At first we will estimate the time delay and the embedding dimension, which is needed for the Lyapunov exponent estimation and for the phase space reconstruction. Subsequently we will compute the largest Lyapunov exponent, which is one of the important indicators of chaos. Then we will calculate the 0-1 test for chaos. Finally we will compute the Hurst exponent by Rescaled Range analysis and by dispersional analysis. The Hurst exponent is a numerical estimate of the predictability of a time series. In the end we will display a phase portrait of detrended GDP time series. The results indicated that chaotic behaviors obviously exist in GDP.

Keywords

Chaos theory GDP Time series analysis Phase Space Reconstruction Hurst exponent largest Lyapunov exponent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bassingthwaghte, J.B.: Physiological heterogeneity: Fractals link determinism and randomness in structure and function. News in Physiological Sciences 3, 5–10 (1988)Google Scholar
  2. 2.
    Dawes, J.H.P., Freeland, M.C.: The ‘0–1 test for chaos’ and strange nonchaotic attractors (2008), people.bath.ac.uk/jhpd20/publications
  3. 3.
    Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    HoráK, J., KrlíN, L., Raidl, A.: Deterministický chaos a jeho fyzikální aplikace, Academia, Praha, 437 (2003)Google Scholar
  5. 5.
    Galka, A.: Topics in Nonlinear Time Series Analysis. World Scientific (2000)Google Scholar
  6. 6.
    Gotthans, T.: Advanced algorithms for the analysis of data sequences in Matlab, Master’s Thesis, University of technology Brno (2010)Google Scholar
  7. 7.
    Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proc. Roy. Soc. A 460, 603–611 (2004)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Grassberg, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346 (1983)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Henry, B., Lovell, N., Camacho, F.: Nonlinear dynamics time series analysis. In: Akay, M. (ed.) Nonlinear Biomedical Signal Processing, pp. 1–39. Insititue of Electrical and Electronics Engineers, Inc. (2001)Google Scholar
  10. 10.
    Hurst, H.E.: Long term storage capacity of reservoirs. Trans. Am. Soc. Eng. 116, 770–799 (1951)Google Scholar
  11. 11.
    Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403–3411 (1992)CrossRefGoogle Scholar
  12. 12.
    Kodba, S., Perc, M., Marhl, M.: Detecting chaos from a time series. European Journal of Physics 26, 205–215 (2005)CrossRefGoogle Scholar
  13. 13.
    Kříž, R.: Chaos in GDP. Acta Polytechnica 51(5) (2011)Google Scholar
  14. 14.
    Lorenz, H.-W.: Nonlinear Dynamical Economics and Chaotic Motion. Springer (1989)Google Scholar
  15. 15.
    Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman and Co. (1983)Google Scholar
  16. 16.
    Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422 (1968)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45, 712–726 (1980)CrossRefGoogle Scholar
  18. 18.
    Rosenstein, M.T., Collins, J.J., Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117–134 (1993)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Takens, F.: Detecting Strange Attractor in Turbulence. In: Rand, D.A., Young, L.S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics, vol. 898, p. 366. Springer, Berlin (1981)CrossRefGoogle Scholar
  20. 20.
    Theiler, J., Eubank, J., Longtin, A., Galdrikian, B., Farmer, J.D.: Testing for nonlinearity in time series: The method of surrogate data. Physica D 58, 77 (1992)MATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.University of PardubicePardubiceCzech Republic

Personalised recommendations