Prediction of Hidden Oscillations Existence in Nonlinear Dynamical Systems: Analytics and Simulation

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 210)

Abstract

From a computational point of view, in nonlinear dynamical systems, attractors can be regarded as self-excited and hidden attractors. Self-excited attractors can be localized numerically by a standard computational procedure, in which after a transient process a trajectory, starting from a point of unstable manifold in a neighborhood of equilibrium, reaches a state of oscillation, therefore one can easily identify it. In contrast, for a hidden attractor, a basin of attraction does not intersect neighborhoods of equilibria. While classical attractors are self-excited, attractors can therefore be obtained numerically by the standard computational procedure, for localization of hidden attractors it is necessary to develop special procedures, since there are no similar transient processes leading to such attractors. This keynote lecture is devoted to affective analytical-numerical methods for localization of hidden oscillations in nonlinear dynamical systems and their application to well known fundamental problems and applied models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abooee, A., Yaghini-Bonabi, H., Jahed-Motlagh, M.: Analysis and circuitry realization of a novel three-dimensional chaotic system. Commun Nonlinear Sci. Numer. Simulat. 18, 1235–1245 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aizerman, M.A.: On a problem concerning the stability in the large of dynamical systems. Uspekhi Mat. Nauk 4, 187–188 (1949) (in Russian) MathSciNetGoogle Scholar
  3. 3.
    Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. Pergamon, Oxford (1966)Google Scholar
  4. 4.
    Belousov, B.P.: A periodic reaction and its mechanism. In: Collection of short papers on radiation medicine for 1958,.Med. Publ., Moscow (1959) (in Russian) Google Scholar
  5. 5.
    Bilotta, E., Pantano, P.: A gallery of Chua attractors, vol. Series A. 61. World Scientific (2008)Google Scholar
  6. 6.
    Bragin, V.O., Kuznetsov, N.V., Leonov, G.A.: Algorithm for counterexamples construction for Aizerman’s and Kalman’s conjectures. IFAC Proceedings Volumes (IFAC-PapersOnline) 4(1), 24–28 (2010), doi:10.3182/20100826-3-TR-4016.00008Google Scholar
  7. 7.
    Bragin, V.O., Vagaitsev, V.I., Kuznetsov, N.V., Leonov, G.A.: Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits. Journal of Computer and Systems Sciences International 50(4), 511–543 (2011), doi:10.1134/S106423071104006XMathSciNetCrossRefGoogle Scholar
  8. 8.
    de Bruin, J., Doris, A., van de Wouw, N., Heemels, W., Nijmeijer, H.: Control of mechanical motion systems with non-collocation of actuation and friction: A Popov criterion approach for input-to-state stability and set-valued nonlinearities. Automatica 45(2), 405–415 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chen, G., Ueta, T.: Yet another chaotic attractor. International Journal of Bifurcation and Chaos 9(7), 1465–1466 (1999)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chua, L.: A zoo of strange attractors from the canonical Chua’s circuits. In: Proceedings of the IEEE 35th Midwest Symposium on Circuits and Systems (Cat. No.92CH3099-9), vol. 2, pp. 916–926 (1992)Google Scholar
  11. 11.
    Chua, L.O., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Transactions on Circuits and Systems CAS-33(11), 1072–1118 (1986)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cima, A., van den Essen, A., Gasull, A., Hubbers, E., Mañosas, F.: A polynomial counterexample to the Markus-Yamabe conjecture. Advances in Mathematics 131(2), 453–457 (1997)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Duffing, G.: Erzwungene Schwingungen bei Veranderlicher Eigenfrequenz. F. Vieweg u. Sohn, Braunschweig (1918)Google Scholar
  14. 14.
    Fujii, K.: Complexity-stability relationship of two-prey-one-predator species system model; local and global stability. Journal of Theoretical Biology 69(4), 613–623 (1977)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jafari, S., Sprott, J., Golpayegani, S.: Elementary quadratic chaotic flows with no equilibria. Physics Letters A 377, 699–702 (2013)CrossRefGoogle Scholar
  16. 16.
    Kalman, R.E.: Physical and mathematical mechanisms of instability in nonlinear automatic control systems. Transactions of ASME 79(3), 553–566 (1957)MathSciNetGoogle Scholar
  17. 17.
    Kapranov, M.: Locking band for phase-locked loop. Radiofizika 2(12), 37–52 (1956) (in Russian)Google Scholar
  18. 18.
    Kiseleva, M.A., Kuznetsov, N.V., Leonov, G.A., Neittaanmäki, P.: Drilling systems failures and hidden oscillations. In: Proceedings of IEEE 4th International Conference on Nonlinear Science and Complexity, NSC 2012, pp. 109–112 (2012), doi:10.1109/NSC.2012.6304736Google Scholar
  19. 19.
    Krylov, A.N.: The Vibration of Ships. GRSL, Moscow (1936) (in Russian)Google Scholar
  20. 20.
    Kuznetsov, N., Kuznetsova, O., Leonov, G., Vagaitsev, V.: Analytical-numerical localization of hidden attractor in electrical Chua’s circuit. In: Ferrier, J.-L., Bernard, A., Gusikhin, O., Madani, K. (eds.) Informatics in Control, Automation and Robotics. LNEE, vol. 174, pp. 149–158. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Kuznetsov, N.V., Kuznetsova, O.A., Leonov, G.A.: Visualization of four normal size limit cycles in two-dimensional polynomial quadratic system. Differential Equations and Dynamical Systems 21(1-2), 29–34 (2013), doi:10.1007/s12591-012-0118-6MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kuznetsov, N.V., Leonov, G.A.: On stability by the first approximation for discrete systems. In: Proceedings of International Conference on Physics and Control, PhysCon 2005, vol. 2005, pp. 596–599 (2005), doi:10.1109/PHYCON.2005.1514053Google Scholar
  23. 23.
    Kuznetsov, N.V., Leonov, G.A.: Lyapunov quantities, limit cycles and strange behavior of trajectories in two-dimensional quadratic systems. Journal of Vibroengineering 10(4), 460–467 (2008)Google Scholar
  24. 24.
    Kuznetsov, N.V., Leonov, G.A., Seledzhi, S.M.: Hidden oscillations in nonlinear control systems. IFAC Proceedings Volumes (IFAC-PapersOnline) 18(1), 2506–2510 (2011), doi:10.3182/20110828-6-IT-1002.03316Google Scholar
  25. 25.
    Kuznetsov, N.V., Leonov, G.A., Vagaitsev, V.I.: Analytical-numerical method for attractor localization of generalized Chua’s system. IFAC Proceedings Volumes (IFAC-PapersOnline) 4(1), 29–33 (2010), doi:10.3182/20100826-3-TR-4016.00009MathSciNetGoogle Scholar
  26. 26.
    Lauvdal, T., Murray, R., Fossen, T.: Stabilization of integrator chains in the presence of magnitude and rate saturations: a gain scheduling approach. In: Proc. IEEE Control and Decision Conference, vol. 4, pp. 4404–4005 (1997)Google Scholar
  27. 27.
    Leonov, G.A.: Strange attractors and classical stability theory. St.Petersburg University Press, St.Petersburg (2008)Google Scholar
  28. 28.
    Leonov, G.A.: Effective methods for periodic oscillations search in dynamical systems. App. Math. & Mech. 74(1), 24–50 (2010)CrossRefGoogle Scholar
  29. 29.
    Leonov, G.A., Andrievskii, B.R., Kuznetsov, N.V., Pogromskii, A.Y.: Aircraft control with anti-windup compensation. Differential equations 48(13), 1700–1720 (2012), doi:10.1134/S001226611213CrossRefGoogle Scholar
  30. 30.
    Leonov, G.A., Bragin, V.O., Kuznetsov, N.V.: Algorithm for constructing counterexamples to the Kalman problem. Doklady Mathematics 82(1), 540–542 (2010), doi:10.1134/S1064562410040101CrossRefMATHGoogle Scholar
  31. 31.
    Leonov, G.A., Bragin, V.O., Kuznetsov, N.V.: On problems of Aizerman and Kalman. Vestnik St. Petersburg University. Mathematics 43(3), 148–162 (2010), doi:10.3103/S1063454110030052MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Leonov, G.A., Kuznetsov, G.V.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits. International Journal of Bifurcation and Chaos 23(1), Art. no. 1330002 (2013), doi:10.1142/S0218127413300024Google Scholar
  33. 33.
    Leonov, G.A., Kuznetsov, G.V.: Hidden oscillations in drilling systems: torsional vibrations. Journal of Applied Nonlinear Dynamics 2(1), 83–94 (2013), doi:10.5890/JAND.2012.09.006MathSciNetGoogle Scholar
  34. 34.
    Leonov, G.A., Kuznetsov, N.V.: Computation of the first lyapunov quantity for the second-order dynamical system. IFAC Proceedings Volumes (IFAC-PapersOnline) 3, 87–89 (2007), doi:10.3182/20070829-3-RU-4912.00014CrossRefGoogle Scholar
  35. 35.
    Leonov, G.A., Kuznetsov, N.V.: Time-varying linearization and the Perron effects. International Journal of Bifurcation and Chaos 17(4), 1079–1107 (2007), doi:10.1142/S0218127407017732MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Leonov, G.A., Kuznetsov, N.V.: Limit cycles of quadratic systems with a perturbed weak focus of order 3 and a saddle equilibrium at infinity. Doklady Mathematics 82(2), 693–696 (2010), doi:10.1134/S1064562410050042MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Leonov, G.A., Kuznetsov, N.V.: Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems. Doklady Mathematics 84(1), 475–481 (2011), doi:10.1134/S1064562411040120MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Leonov, G.A., Kuznetsov, N.V.: Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems. IFAC Proceedings Volumes (IFAC-PapersOnline) 18(1), 2494–2505 (2011), doi:10.3182/20110828-6-IT-1002.03315Google Scholar
  39. 39.
    Leonov, G.A., Kuznetsov, N.V.: Hidden oscillations in dynamical systems: 16 Hilbert’s problem, Aizerman’s and Kalman’s conjectures, hidden attractors in Chua’s circuits. Journal of Mathematical Sciences (in print, 2013)Google Scholar
  40. 40.
    Leonov, G.A., Kuznetsov, N.V.: Hidden oscillations in dynamical systems. from hidden oscillation in 16th hilbert, aizerman and kalman problems to hidden chaotic attractor in chua circuits. In: 2012 Fifth International Workshop on Chaos-Fractals Theories and Applications, IWCFTA, pp. XV–XVII (2013), doi:10.1109/IWCFTA.2012.8Google Scholar
  41. 41.
    Leonov, G.A., Kuznetsov, N.V.: Analytical-numerical methods for hidden attractors localization: the 16th Hilbert problem, Aizerman and Kalman conjectures, and Chua circuits. In: Numerical Methods for Differential Equations, Optimization, and Technological Problems, Computational Methods in Applied Sciences, vol. 27, part I, pp. 41–64. Springer (2013), doi:10.1007/978-94-007-5288-7_3Google Scholar
  42. 42.
    Leonov, G.A., Kuznetsov, N.V., Kudryashova, E.V.: Cycles of two-dimensional systems: Computer calculations, proofs, and experiments. Vestnik St.Petersburg University. Mathematics 41(3), 216–250 (2008), doi:10.3103/S1063454108030047MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Leonov, G.A., Kuznetsov, N.V., Kudryashova, E.V.: A direct method for calculating Lyapunov quantities of two-dimensional dynamical systems. Proceedings of the Steklov Institute of Mathematics 272(suppl. 1), S119–S127 (2011), doi:10.1134/S008154381102009XGoogle Scholar
  44. 44.
    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Localization of hidden Chua’s attractors. Physics Letters A 375(23), 2230–2233 (2011), doi:10.1016/j.physleta.2011.04.037MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Physica D: Nonlinear Phenomena 241(18), 1482–1486 (2012), doi:10.1016/j.physd.2012.05.016MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Li, J.: Hilberts 16-th problem and bifurcations of planar polynomial vector fields. International Journal of Bifurcation and Chaos 13(1), 47–106 (2003)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Markus, L., Yamabe, H.: Global stability criteria for differential systems. Osaka Math. J. 12, 305–317 (1960)MathSciNetMATHGoogle Scholar
  49. 49.
    Ott, E.: Application of the differential transformation method for the solution of the hyperchaotic Rossler system. Scholarpedia 1(8), 1701 (2006)CrossRefGoogle Scholar
  50. 50.
    Poincaré, H.: Mémoire sur les courbes définies par les équations différentielles. Journal de Mathématiques 37, 375–422 (1881)Google Scholar
  51. 51.
    van der Pol, B.: On relaxation-oscillations. Philosophical Magazine and Journal of Science 7(2), 978–992 (1926)Google Scholar
  52. 52.
    Rossler, O.E.: An equation for continuous chaos. Physics Letters A 57(5), 397–398 (1976)CrossRefGoogle Scholar
  53. 53.
    Stoker, J.J.: Nonlinear Vibrations in Mechanical and Electrical Systems. Interscience, N.Y (1950)Google Scholar
  54. 54.
    Strogatz, H.: Nonlinear Dynamics and Chaos. With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press (1994)Google Scholar
  55. 55.
    Timoshenko, S.: Vibration Problems in Engineering. Van Nostrand, N.Y (1928)MATHGoogle Scholar
  56. 56.
    Tricomi, F.: Integrazione di unequazione differenziale presentatasi in elettrotechnica. Annali della R. Shcuola Normale Superiore di Pisa 2(2), 1–20 (1933)MathSciNetGoogle Scholar
  57. 57.
    Ueda, Y., Akamatsu, N., Hayashi, C.: Computer simulations and non-periodic oscillations. Trans. IEICE Japan 56A(4), 218–255 (1973)Google Scholar
  58. 58.
    Wang, X., Chen, G.: A chaotic system with only one stable equilibrium. Commun Nonlinear Sci. Numer. Simulat. 17, 1264–1272 (2012)CrossRefGoogle Scholar
  59. 59.
    Wang, X., Chen, G.: Constructing a chaotic system with any number of equilibria. Nonlinear Dyn. (2012), doi:10.1007/s11071-012-0669-7Google Scholar
  60. 60.
    Wei, Z.: Dynamical behaviors of a chaotic system with no equilibria. Physics Letters A 376, 102–108 (2011)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Wei, Z.: Complex dynamics of a new chaotic system without equilibria. In: 2012 Fifth International Workshop on Chaos-fractals Theories and Applications, pp. 79–82 (2012)Google Scholar
  62. 62.
    Wei, Z., Pehlivan, I.: Chaos, coexisting attractors, and circuit design of the generalized sprott c system with only two stable equilibria. Optoelectronics And Advanced Materials. Rapid Communications 6(7-8), 742–745 (2012)Google Scholar
  63. 63.
    Yang, Q., Wei, Z., Chen, G.: An unusual 3d autonomous quadratic chaotic system with two stable node-foci. International Journal of Bifurcation and Chaos 20(4), 1061–1083 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Faculty of Mathematics and MechanicsSaint Petersburg State UniversitySaint-PetersburgRussia
  2. 2.Dept. of Mathematical Information TechnologyUniversity of JyväskyläAgoraFinland

Personalised recommendations